cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054469 a(n) = a(n-1) + a(n-2) + (n+2)*binomial(n+3, 3)/2, with a(0) = 1, a(1) = 7.

Original entry on oeis.org

1, 7, 28, 85, 218, 499, 1053, 2092, 3970, 7272, 12958, 22596, 38739, 65535, 109714, 182185, 300620, 493635, 807555, 1317360, 2144396, 3485032, 5657028, 9174560, 14869613, 24088399, 39009168, 63156437, 102233030, 165466347, 267786673
Offset: 0

Views

Author

Barry E. Williams, Mar 31 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Right-hand column 11 of triangle A011794.

Programs

  • Magma
    A054469:= func< n | Fibonacci(n+12) -(1/12)*(1716 +802*n +173*n^2 +20*n^3 +n^4) >;
    [A054469(n): n in [0..40]]; // G. C. Greubel, Oct 21 2024
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==7,a[n]==a[n-1]+a[n-2]+(n+2) Binomial[ n+3,3]/2},a,{n,30}] (* Harvey P. Dale, Sep 22 2013 *)
    CoefficientList[Series[(1+x)/((1-x)^5*(1-x-x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 23 2013 *)
  • PARI
    a(n) = sum(i=1,(n+2)\2,binomial(n+5-i,n+2-2*i))+2*sum(i=1,(n+1)\2,binomial(n+5-i,n+1-2*i)) \\ Jason Yuen, Aug 13 2024
    
  • SageMath
    def A054469(n): return fibonacci(n+12) - (1716 + 802*n + 173*n^2 + 20*n^3 + n^4)//12
    [A054469(n) for n in range(41)] # G. C. Greubel, Oct 21 2024

Formula

a(n) = a(n-1) + a(n-2) + (n+1)*(n+2)^2*(n+3)/12.
a(-n) = 0.
a(n) = (Sum_{i=1..floor((n+2)/2)} binomial(n+5-i, n+2-2*i)) + 2*(Sum_{i=1..floor((n+1)/2)} binomial(n+5-i, n+1-2*i)).
G.f.: (1+x) / ((1-x)^5*(1-x-x^2)). - Colin Barker, Jun 11 2013
From G. C. Greubel, Oct 21 2024: (Start)
a(n) = Fibonacci(n+12) - Sum_{j=0..4} Fibonacci(11-2*j) * binomial(n+j, j).
a(n) = Fibonacci(n+12) - (1/12)*(1716 + 802*n + 173*n^2 + 20*n^3 + n^4). (End)