cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054515 Number of ways to place non-intersecting diagonals in convex (n+2)-gon so as to create no quadrilaterals.

Original entry on oeis.org

1, 1, 2, 6, 21, 78, 301, 1198, 4888, 20340, 85986, 368239, 1594183, 6965380, 30675399, 136026759, 606848034, 2721783023, 12265670909, 55511013680, 252193872912, 1149742659556, 5258257323304, 24117924005616, 110915268468358, 511334146237807, 2362650323603539
Offset: 0

Views

Author

Len Smiley, Apr 08 2000

Keywords

Comments

Number of tree interval posets of permutations with n+1 minimal elements. - Mathilde Bouvel, Oct 21 2021

Examples

			a(3) = 6 because the pentagon allows null placement and five ways to place two diagonals.
		

Crossrefs

Cf. A046736, A049124, A003168, A054514, A348479 (free interv. posets not necess. trees).

Programs

  • Maple
    read("transforms") :
    taylor( (1-2*y+y^2-y^3)/(1-y),y=0,50) ;
    gfun[seriestolist](%) ;
    REVERT(%) ; # R. J. Mathar, Nov 04 2021
  • Mathematica
    InverseSeries[Series[(y-2*y^2+y^3-y^4)/(1-y), {y, 0, 24}], x] (* then A(x)=[y(x)-x]/x *)
  • PARI
    my(N=28, x='x+O('x^N)); Vec(serreverse((x-2*x^2+x^3-x^4)/(1-x))) \\ Hugo Pfoertner, Jan 26 2024

Formula

REVERT transform of (1-2*x+x^2-x^3)/(1-x) [Smiley].
a(n-1) = (1/n) * [binomial(2n-2,n-1) + Sum_{i=1..(n-3)} Sum_{k=1..Min(i,(n-i-1)/2)} binomial(n+i-1,i)*binomial(i,k)*binomial(n-i-k-2,k-1) ] if n>1. Proved in M. Bouvel, L. Cioni, B. Izart (Theorem 21) with offset 1. - Mathilde Bouvel, Oct 21 2021
G.f. A(z) = Sum_{n>=0} a(n)*z^n satisfies A(z) = 1 + z*A^2 + z^3*A^4/(1-z*A). Proved in M. Bouvel, L. Cioni, B. Izart (Equation (6) page 17 with offset 1). - Mathilde Bouvel, Oct 21 2021
Asymptotic behavior of a(n-1) is c*n^(-3/2)*r^n with c approximately 0.0792 and r approximately 4.8920. Proved in M. Bouvel, L. Cioni, B. Izart (Theorem 22). - Mathilde Bouvel, Oct 21 2021
D-finite with recurrence 23 *n *(n-1) *(12869043*n-33144451) *(n+1) *a(n) -n *(n-1) *(1989552043*n^2-6117767430*n+2643232213) * a(n-1) +(n-1) *(3359030609*n^3-15361701516*n^2+20123332181*n-6949961920) *a(n-2) +(-3560897749*n^4+25182507306*n^3-62054513365*n^2 +60006265908*n-16495478980) *a(n-3) +3*(146027817*n^4-1247820696*n^3+3378236999*n^2-2363753280*n-1468123920)*a(n-4) -3*(335627*n+695280) *(3*n-13) *(3*n-11) *(n-4) *a(n-5)=0. - R. J. Mathar, Oct 28 2021
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(2*n-k,n-3*k). - Seiichi Manyama, Jan 26 2024

Extensions

a(0) = 1 prefixed by R. J. Mathar, Nov 04 2021