A054521 Triangle read by rows: T(n,k) = 1 if gcd(n, k) = 1, T(n,k) = 0 otherwise (n >= 1, 1 <= k <= n).
1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0
Offset: 1
Examples
The triangle T(n,k) begins: n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 1: 1 2: 1 0 3: 1 1 0 4: 1 0 1 0 5: 1 1 1 1 0 6: 1 0 0 0 1 0 7: 1 1 1 1 1 1 0 8: 1 0 1 0 1 0 1 0 9: 1 1 0 1 1 0 1 1 0 10: 1 0 1 0 0 0 1 0 1 0 11: 1 1 1 1 1 1 1 1 1 1 0 12: 1 0 0 0 1 0 1 0 0 0 1 0 13: 1 1 1 1 1 1 1 1 1 1 1 1 0 14: 1 0 1 0 1 0 0 0 1 0 1 0 1 0 15: 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 ... (Reformatted by _Wolfdieter Lang_, Apr 26 2013) Sums over antidiagonals: n = 3: 2*T(2,1) = 2 = T(3,1) + T(3,2) = phi(3). n = 4: 2*(T(3,1) + T(2,2)) = 2 = phi(4), etc. - _Wolfdieter Lang_, Apr 26 2013
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- Jakub Jaroslaw Ciaston, A054531 vs A164306 (plot shows these ones)
- Index entries for characteristic functions
Programs
-
Haskell
a054521 n k = a054521_tabl !! (n-1) !! (k-1) a054521_row n = a054521_tabl !! (n-1) a054521_tabl = map (map a063524) a050873_tabl a054521_list = concat a054521_tabl -- Reinhard Zumkeller, Sep 03 2015
-
Maple
A054521_row := n -> seq(abs(numtheory[jacobi](n-k,k)),k=1..n); for n from 1 to 13 do A054521_row(n) od; # Peter Luschny, Aug 05 2012
-
Mathematica
T[ n_, k_] := Boole[ n>0 && k>0 && GCD[ n, k] == 1] (* Michael Somos, Jul 17 2011 *) T[ n_, k_] := If[ n<1 || k<1, 0, If[ k>n, T[ k, n], If[ k==1, 1, If[ n>k, T[ k, Mod[ n, k, 1]], 0]]]] (* Michael Somos, Jul 17 2011 *)
-
PARI
{T(n, k) = n>0 && k>0 && gcd(n, k)==1} /* Michael Somos, Jul 17 2011 */
-
Sage
def A054521_row(n): return [abs(kronecker_symbol(n-k,k)) for k in (1..n)] for n in (1..13): print(A054521_row(n)) # Peter Luschny, Aug 05 2012
Comments