A054523 Triangle read by rows: T(n,k) = phi(n/k) if k divides n, T(n,k)=0 otherwise (n >= 1, 1 <= k <= n).
1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 4, 0, 0, 0, 1, 2, 2, 1, 0, 0, 1, 6, 0, 0, 0, 0, 0, 1, 4, 2, 0, 1, 0, 0, 0, 1, 6, 0, 2, 0, 0, 0, 0, 0, 1, 4, 4, 0, 0, 1, 0, 0, 0, 0, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 6
Offset: 1
Examples
Triangle begins 1; 1, 1; 2, 0, 1; 2, 1, 0, 1; 4, 0, 0, 0, 1; 2, 2, 1, 0, 0, 1; 6, 0, 0, 0, 0, 0, 1; 4, 2, 0, 1, 0, 0, 0, 1; 6, 0, 2, 0, 0, 0, 0, 0, 1; 4, 4, 0, 0, 1, 0, 0, 0, 0, 1; 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 1;
References
- Ronald L. Graham, D. E. Knuth, Oren Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., 1994, p. 136.
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- Eric Weisstein's World of Mathematics, Cycle Index.
Crossrefs
Programs
-
Haskell
a054523 n k = a054523_tabl !! (n-1) !! (k-1) a054523_row n = a054523_tabl !! (n-1) a054523_tabl = map (map (\x -> if x == 0 then 0 else a000010 x)) a126988_tabl -- Reinhard Zumkeller, Jan 20 2014
-
Magma
A054523:= func< n,k | k eq n select 1 else (n mod k) eq 0 select EulerPhi(Floor(n/k)) else 0 >; [A054523(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jun 24 2024
-
Maple
A054523 := proc(n,k) if n mod k = 0 then numtheory[phi](n/k) ; else 0; end if; end proc: # R. J. Mathar, Apr 11 2011
-
Mathematica
T[n_, k_]:= If[k==n,1,If[Divisible[n, k], EulerPhi[n/k], 0]]; Table[T[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Dec 15 2017 *)
-
PARI
for(n=1, 10, for(k=1, n, print1(if(!(n % k), eulerphi(n/k), 0), ", "))) \\ G. C. Greubel, Dec 15 2017
-
SageMath
def A054523(n,k): if (k==n): return 1 elif (n%k)==0: return euler_phi(int(n//k)) else: return 0 flatten([[A054523(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jun 24 2024
Formula
Sum_{k=1..n} k * T(n, k) = A018804(n). - Gary W. Adamson, Jan 08 2007
From Werner Schulte, Sep 06 2020: (Start)
Sum_{k=1..n} k^2 * T(n,k) = A069097(n) for n > 0. (End)
From G. C. Greubel, Jun 24 2024: (Start)
T(2*n-1, n) = A000007(n-1), n >= 1.
T(2*n, n) = A000012(n), n >= 1.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1 - (-1)^n)*n/2.
Sum_{k=1..floor(n+1)/2} T(n-k+1, k) = A092843(n+1).
Sum_{k=1..n} (k+1)*T(n, k) = A209295(n).
Sum_{k=1..n} k^3 * T(n, k) = A343497(n).
Sum_{k=1..n} k^4 * T(n, k) = A343498(n).
Sum_{k=1..n} k^5 * T(n, k) = A343499(n). (End)
Comments