cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054557 Number of labeled pure 2-complexes on n nodes (0-simplexes) with 5 2-simplexes and 10 1-simplexes.

Original entry on oeis.org

72, 4824, 32256, 127008, 378000, 940464, 2062368, 4115232, 7629336, 13333320, 22198176, 35485632, 54800928, 82149984, 120000960, 171350208, 239792616, 329596344, 445781952, 594205920, 781648560, 1015906320, 1305888480, 1661718240, 2094838200, 2618120232
Offset: 5

Views

Author

Vladeta Jovovic, Apr 10 2000

Keywords

Comments

Number of {T_1,T_2,...,T_k} where T_i,i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=5,l=10.

References

  • V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.

Programs

  • Magma
    I:=[72, 4824, 32256, 127008, 378000, 940464, 2062368]; [n le 7 select I[n] else 7*Self(n-1)-21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6)+Self(n-7): n in [1..25]]; // Vincenzo Librandi, Apr 28 2012
  • Mathematica
    CoefficientList[Series[72*(1+60*x)/(1-x)^7,{x,0,30}],x] (* Vincenzo Librandi, Apr 28 2012 *)

Formula

a(n) = 72*C(n, 5)+4392*C(n, 6) = n*(n-1)*(n-2)*(n-3)*(n-4)*(61*n-299)/10.
G.f.: 72*x^5*(1+60*x)/(1-x)^7. - Colin Barker, Jan 19 2012
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). Vincenzo Librandi, Apr 28 2012

Extensions

More terms from James Sellers, Apr 11 2000