cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A054559 Number of labeled pure 2-complexes on n nodes (0-simplexes) with 5 2-simplexes and 8 1-simplexes.

Original entry on oeis.org

30, 180, 630, 1680, 3780, 7560, 13860, 23760, 38610, 60060, 90090, 131040, 185640, 257040, 348840, 465120, 610470, 790020, 1009470, 1275120, 1593900, 1973400, 2421900, 2948400, 3562650, 4275180, 5097330, 6041280, 7120080, 8347680, 9738960, 11309760, 13076910
Offset: 5

Views

Author

Vladeta Jovovic, Apr 10 2000

Keywords

Comments

Number of {T_1,T_2,...,T_k} where T_i,i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=5,l=8.
Let H be the n X n Hilbert matrix H(i,j) = 1/(i+j-1) for 1 <= i,j <= n. Let B be the inverse matrix of H. The sum of the elements in row 3 of B equals -a(n+2). - T. D. Noe, May 01 2011

References

  • V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.

Crossrefs

Programs

  • Magma
    I:=[30, 180, 630, 1680, 3780, 7560]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..30]]; // Vincenzo Librandi, Apr 29 2012
    
  • Mathematica
    Table[n*(n+1)*(n+2)*(n+3)*(n+4)/4, {n,1,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2009 *)
    CoefficientList[Series[30/(1-x)^6,{x,0,30}],x] (* Vincenzo Librandi, Apr 29 2012 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(x^5*exp(x)/4)) \\ G. C. Greubel, Nov 23 2017

Formula

a(n) = 30*C(n,5) = 30*A000389(n) = n*(n-1)*(n-2)*(n-3)*(n-4)/4.
G.f.: 30*x^5/(1-x)^6. - Colin Barker, Jan 19 2012
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Vincenzo Librandi, Apr 29 2012
E.g.f.: x^5*exp(x)/4. - G. C. Greubel, Nov 23 2017
From Amiram Eldar, Mar 08 2022: (Start)
Sum_{n>=5} 1/a(n) = 1/24.
Sum_{n>=5} (-1)^(n+1)/a(n) = 8*log(2)/3 - 131/72. (End)

A054647 Number of labeled pure 2-complexes on n nodes (0-simplexes) with 4 2-simplexes and 12 1-simplexes.

Original entry on oeis.org

30, 2310, 42840, 391545, 2375100, 10980585, 41761720, 136963255, 399689290, 1060984925, 2603641040, 5979294230, 12973080120, 26794003110, 53000811600, 100914240770, 185718969590, 331524753560, 575738427880, 975199600375, 1614655942900, 2618302433175
Offset: 6

Views

Author

Vladeta Jovovic, Apr 16 2000

Keywords

Comments

Number of {T_1,T_2,...,T_k} where T_i,i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=4,l=12.
Numbers of sets of 4 triangles that are pairwise edge-disjoint in the complete graph K_n. - Julian Allagan, Mar 08 2025

References

  • Julian Allagan, Edge-Disjoint Triangle Packings in Complete Graphs: Recurrence Relations and Closed Formulas (submitted 2025)
  • V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.

Crossrefs

Formula

a(n) = 30*C(n, 6)+2100*C(n, 7)+25200*C(n, 8)+86625*C(n, 9)+116550*C(n, 10)+69300*C(n, 11)+15400*C(n, 12) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n^6+3*n^5-86*n^4-240*n^3+2704*n^2+5232*n-34128)/31104.
G.f.: 5*x^6*(169*x^6-1119*x^5+2535*x^4-1245*x^3-3030*x^2-384*x-6)/(x-1)^13. [Colin Barker, Jun 22 2012]

Extensions

More terms from James Sellers, Apr 16 2000

A054558 Number of labeled pure 2-complexes on n nodes (0-simplexes) with 5 2-simplexes and 9 1-simplexes.

Original entry on oeis.org

150, 960, 3605, 10360, 25200, 54600, 108570, 201960, 356070, 600600, 975975, 1536080, 2351440, 3512880, 5135700, 7364400, 10377990, 14395920, 19684665, 26565000, 35420000, 46703800, 60951150, 78787800, 100941750, 128255400
Offset: 5

Views

Author

Vladeta Jovovic, Apr 10 2000

Keywords

Comments

Number of {T_1,T_2,...,T_k} where T_i, i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=5, l=9.

References

  • V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.

Crossrefs

Cf. A054557.

Programs

  • Maple
    A054558:=n->n*(n-1)*(n-2)*(n-3)*(n-4)*(n^2+n+150)/144; seq(A054558(n), n=5..30); # Wesley Ivan Hurt, Apr 29 2014
  • Mathematica
    Table[n*(n - 1)*(n - 2)*(n - 3)*(n - 4)*(n^2 + n + 150)/144, {n, 5, 30}] (* Wesley Ivan Hurt, Apr 29 2014 *)

Formula

a(n) = 150*C(n,5) +60*C(n,6) +35*C(n,7) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n^2+n+150)/144.
G.f.: 5*x^5*(30-48*x+25*x^2)/(1-x)^8. - Colin Barker, Jun 21 2012

A054562 Number of labeled pure 2-complexes on n nodes (0-simplexes) with 5 2-simplexes and 13 1-simplexes.

Original entry on oeis.org

540, 65625, 1272320
Offset: 6

Views

Author

Vladeta Jovovic, Apr 10 2000

Keywords

Comments

Number of {T_1,T_2,...,T_k} where T_i,i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=5,l=13.

References

  • V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.

Crossrefs

Cf. A054557.

Formula

a(n)=540*C(n, 6)+61845*C(n, 7)+762440*C(n, 8)+...

A054560 Number of labeled pure 2-complexes on n nodes (0-simplexes) with 5 2-simplexes and 11 1-simplexes.

Original entry on oeis.org

6300, 89586, 549528
Offset: 6

Views

Author

Vladeta Jovovic, Apr 10 2000

Keywords

Comments

Number of {T_1,T_2,...,T_k} where T_i,i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=5,l=11.

References

  • V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.

Crossrefs

Cf. A054557.

Formula

a(n)=6300*C(n, 6)+45486*C(n, 7)+9240*C(n, 8)+...

A054561 Number of labeled pure 2-complexes on n nodes (0-simplexes) with 5 2-simplexes and 12 1-simplexes.

Original entry on oeis.org

2700, 118020, 1220520
Offset: 6

Views

Author

Vladeta Jovovic, Apr 10 2000

Keywords

Comments

Number of {T_1,T_2,...,T_k} where T_i,i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=5,l=12.

References

  • V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.

Crossrefs

Cf. A054557.

Formula

a(n)=2700*C(n, 6)+99120*C(n, 7)+351960*C(n, 8)+...

A054648 Number of labeled pure 2-complexes on n nodes (0-simplexes) with 4 2-simplexes and 11 1-simplexes.

Original entry on oeis.org

360, 13230, 137760, 835380, 3679200, 13056120, 39584160, 106383420, 259819560, 586936350, 1242521280, 2489618040, 4758324480, 8728907040, 15446635200, 26477304840, 44114190120, 71649152190, 113722852320, 176771479500, 269590120800, 404035889400, 595897192800
Offset: 6

Views

Author

Vladeta Jovovic, Apr 16 2000

Keywords

Comments

Number of {T_1,T_2,...,T_k} where T_i,i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=4,l=11.

References

  • V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.

Crossrefs

Formula

a(n) = 360*C(n, 6)+10710*C(n, 7)+42000*C(n, 8)+41580*C(n, 9)+12600*C(n, 10) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n^4+3*n^3-58*n^2-120*n+1008)/288.
Empirical G.f.: -30*x^6*(89*x^4-391*x^3+401*x^2+309*x+12)/(x-1)^11. [Colin Barker, Jun 22 2012]

Extensions

More terms from James Sellers, Apr 16 2000
Showing 1-7 of 7 results.