cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A052787 Product of 5 consecutive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 720, 2520, 6720, 15120, 30240, 55440, 95040, 154440, 240240, 360360, 524160, 742560, 1028160, 1395360, 1860480, 2441880, 3160080, 4037880, 5100480, 6375600, 7893600, 9687600, 11793600, 14250600, 17100720, 20389320, 24165120, 28480320, 33390720
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Appears in Harriot along with the formula (for a different offset) a(n) = n^5 + 10n^4 + 35n^3 + 50n^2 + 24n, see links. - Charles R Greathouse IV, Oct 22 2014

Crossrefs

Programs

  • Magma
    [n*(n-1)*(n-2)*(n-3)*(n-4): n in [0..35]]; // Vincenzo Librandi, May 26 2011
    
  • Maple
    spec := [S,{B=Set(Z),S=Prod(Z,Z,Z,Z,Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(numbperm (n,5), n=0..31); # Zerinvary Lajos, Apr 26 2007
    G(x):=x^5*exp(x): f[0]:=G(x): for n from 1 to 31 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..31); # Zerinvary Lajos, Apr 05 2009
  • Mathematica
    Times@@@(Partition[Range[-4,35],5,1])  (* Harvey P. Dale, Feb 04 2011 *)
  • PARI
    a(n)=120*binomial(n,5) \\ Charles R Greathouse IV, Nov 20 2011

Formula

a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)=n!/(n-5)!. [Corrected by Philippe Deléham, Dec 12 2003]
a(n) = 120*A000389(n) = 4*A054559(n).
E.g.f.: x^5*exp(x).
Recurrence: {a(1)=0, a(2)=0, a(4)=0, a(3)=0, (-1-n)*a(n)+(-4+n)*a(n+1), a(5)=120}.
O.g.f.: 120*x^5/(-1+x)^6. - R. J. Mathar, Nov 16 2007
For n>5: a(n) = A173333(n,n-5). - Reinhard Zumkeller, Feb 19 2010
a(n) = a(n-1) + 5*A052762(n). - J. M. Bergot, May 30 2012
From Amiram Eldar, Mar 08 2022: (Start)
Sum_{n>=5} 1/a(n) = 1/96.
Sum_{n>=5} (-1)^(n+1)/a(n) = 2*log(2)/3 - 131/288. (End)

Extensions

More terms from Henry Bottomley, Mar 20 2000

A331431 Triangle read by rows: T(n,k) = (-1)^(n+k)*(n+k+1)*binomial(n,k)*binomial(n+k,k) for n >= k >= 0.

Original entry on oeis.org

1, -2, 6, 3, -24, 30, -4, 60, -180, 140, 5, -120, 630, -1120, 630, -6, 210, -1680, 5040, -6300, 2772, 7, -336, 3780, -16800, 34650, -33264, 12012, -8, 504, -7560, 46200, -138600, 216216, -168168, 51480, 9, -720, 13860, -110880, 450450, -1009008, 1261260, -823680, 218790
Offset: 0

Views

Author

N. J. A. Sloane, Jan 17 2020

Keywords

Comments

Tables I, III, IV on pages 92 and 93 of Ser have integer entries and are A331430, A331431 (the present sequence), and A331432.
Given the system of equations 1 = Sum_{j=0..n} H(i, j) * x(j) for i = 2..n+2 where H(i,j) = 1/(i+j-1) for 1 <= i,j <= n is the n X n Hilbert matrix, then the solutions are x(j) = T(n, j). - Michael Somos, Mar 20 2020 [Corrected by Petros Hadjicostas, Jul 09 2020]

Examples

			Triangle begins:
   1;
  -2,    6;
   3,  -24,    30;
  -4,   60,  -180,     140;
   5, -120,   630,   -1120,     630;
  -6,  210, -1680,    5040,   -6300,     2772;
   7, -336,  3780,  -16800,   34650,   -33264,   12012;
  -8,  504, -7560,   46200, -138600,   216216, -168168,   51480;
   9, -720, 13860, -110880,  450450, -1009008, 1261260, -823680, 218790;
  ...
		

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93. See Table III.

Crossrefs

Columns 1 is A331433 or equally A007531, column 2 is A331434 or equally A054559; the last three diagonals are A002738, A002736, A002457.
Cf. A000290 (row sums), A002457,, A100071, A108666 (alternating row sums), A109188 (diagonal sums), A331322, A331323, A331430, A331432.

Programs

  • Magma
    [(-1)^(n+k)*(k+1)*(2*k+1)*Binomial(n+k+1,n-k)*Catalan(k): k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 22 2022
    
  • Maple
    gf := k -> (1+x)^(-2*(k+1)): ser := k -> series(gf(k), x, 32):
    T := (n, k) -> ((2*k+1)!/(k!)^2)*coeff(ser(k), x, n-k):
    seq(seq(T(n,k), k=0..n),n=0..7); # Peter Luschny, Jan 18 2020
    S:=(n,k)->(-1)^(n+k)*(n+k+1)!/((k!)^2*(n-k)!);
    rho:=n->[seq(S(n,k),k=0..n)];
    for n from 0 to 14 do lprint(rho(n)); od: # N. J. A. Sloane, Jan 18 2020
  • Mathematica
    Table[(-1)^(n+k)*(n+k+1)*Binomial[2*k,k]*Binomial[n+k,n-k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 22 2022 *)
  • Sage
    flatten([[(-1)^(n+k)*(2*k+1)*binomial(2*k,k)*binomial(n+k+1,n-k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Mar 22 2022

Formula

T(n, 0) = (-1)^n*A000027(n+1).
T(n, 1) = A331433(n-1) = (-1)^(n+1)*A007531(n+2).
T(n, 2) = A331434(n-2) = (-1)^n*A054559(n+3).
T(n, n-2) = A002738(n-2).
T(n, n-1) = (-1)*A002736(n).
T(n, n) = A002457(n).
T(2*n, n) = (-1)^n*(3*n+1)!/(n!)^3 = (-1)^n*A331322(n).
Sum_{k=0..n} T(n, k) = A000290(n+1) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A108666(n+1) (alternating row sums).
Sum_{k=0..n} T(n-k, k) = (-1)^n*A109188(n+1) (diagonal sums).
2^n*Sum_{k=0..n} T(n, k)/2^k = (-1)^floor(n/2)*A100071(n+1) (positive half sums).
(-2)^n*Sum_{k=0..n} T(n, k)/(-2)^k = A331323(n) (negative half sums).
T(n, k) = ((2*k+1)!/(k!)^2)*[x^(n-k)] (1+x)^(-2*(k+1)). - Georg Fischer and Peter Luschny, Jan 18 2020
T(n,k) = (-1)^(n+k)*(n+k+1)!/((k!)^2*(n-k)!), for n >= k >= 0. - N. J. A. Sloane, Jan 18 2020
From Petros Hadjicostas, Jul 09 2020: (Start)
Michael Somos's formulas above can be restated as
Sum_{k=0..n} T(n,k)/(i+k) = 1 for i = 1..n+1.
These are special cases of the following formula that is alluded to (in some way) in Ser's book:
1 - Sum_{k=0..n} T(n,k)/(x + k) = (x-1)*...*(x-(n + 1))/(x*(x+1)*...*(x+n)).
Because T(n,k) = (-1)^(n+1)*(n + k + 1)*A331430(n,k) and Sum_{k=0..n} A331430(n,k) = (-1)^(n+1), one may derive this formula from Ser's second formula stated in A331430. (End)
T(2*n+1, n) = (-2)*(-27)^n*Pochhammer(4/3, n)*Pochhammer(5/3, n)/(n!*(n+1)!). - G. C. Greubel, Mar 22 2022

Extensions

Several typos in the data corrected by Georg Fischer and Peter Luschny, Jan 18 2020
Definition changed by N. J. A. Sloane, Jan 18 2020

A189765 Triangle in which row n has the n(n+1)/2 elements of the lower triangular part of the inverse of the n-th order Hilbert matrix.

Original entry on oeis.org

1, 4, -6, 12, 9, -36, 192, 30, -180, 180, 16, -120, 1200, 240, -2700, 6480, -140, 1680, -4200, 2800, 25, -300, 4800, 1050, -18900, 79380, -1400, 26880, -117600, 179200, 630, -12600, 56700, -88200, 44100, 36, -630, 14700, 3360, -88200, 564480, -7560, 211680
Offset: 1

Views

Author

T. D. Noe, May 02 2011

Keywords

Comments

The n-th order Hilbert matrix has elements h(i,j) = 1/(i+j-1) for 1 <= i,j <=n. Only the lower triangular matrix is shown because the Hilbert matrix and its inverse are symmetric. The n-th row begins with n^2 and ends with A000515(n+1).
The sums of select rows of the inverse matrix are sequences A002457, A002736, A002738, A007531, and A054559.
The largest magnitude in the matrix is A210356(n). - T. D. Noe, Mar 28 2012
The sum of the elements of the n-th matrix is n^2. - T. D. Noe, Apr 02 2012

Examples

			Row 3 is 9, -36, 192, 30, -180, 180 which corresponds to the inverse
  9  -36   30
-36  192 -180
30 -180  180
		

Crossrefs

Cf. A002457, A002736, A002738, A005249 (determinant), A007531, A054559, A189766 (trace).

Programs

  • Mathematica
    lowerTri[m_List] := Module[{n = Length[m]}, Flatten[Table[Take[m[[i]], i], {i, n}]]]; Flatten[Table[lowerTri[Inverse[HilbertMatrix[n]]], {n, 6}]]

Formula

a(n,i,j) = (-1)^(i+j) (i+j-1) binomial(n+i-1, n-j) binomial(n+j-1, n-i) binomial(i+j-2, i-1)^2 is the (i,j) element of the inverse of the n-th Hilbert matrix.

A151974 a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)/8.

Original entry on oeis.org

0, 15, 90, 315, 840, 1890, 3780, 6930, 11880, 19305, 30030, 45045, 65520, 92820, 128520, 174420, 232560, 305235, 395010, 504735, 637560, 796950, 986700, 1210950, 1474200, 1781325, 2137590, 2548665, 3020640, 3560040, 4173840, 4869480, 5654880, 6538455, 7529130
Offset: 0

Views

Author

Keywords

Comments

Also the number of 4-cycles in the (n+3)-triangular graph. - Eric W. Weisstein, Aug 14 2017

Crossrefs

Cf. A054559.
Cf. A002417 (number of 3-cycles in the triangular graph), A290939 (5-cycles), A290940 (6-cycles).

Programs

  • Maple
    A151974:=n->n*(n+1)*(n+2)*(n+3)*(n+4)/8: seq(A151974(n), n=0..60); # Wesley Ivan Hurt, Feb 11 2017
  • Mathematica
    Table[Pochhammer[n, 5]/8, {n, 0, 31}] (* or *)
    Rest @ CoefficientList[Series[15 x^2/(1 - x)^6, {x, 0, 32}], x] (* Michael De Vlieger, Feb 12 2017 *)
    Pochhammer[Range[0, 20], 5]/8 (* Eric W. Weisstein, Aug 14 2017 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 15, 90, 315, 840, 1890}, 20] (* Eric W. Weisstein, Aug 14 2017 *)
    Table[15 Binomial[n + 4, 5], {n, 0, 20}] (* Eric W. Weisstein, Aug 14 2017 *)
    15 Binomial[Range[4, 24], 5] (* Eric W. Weisstein, Aug 14 2017 *)
    Table[(24 n+50 n^2+35 n^3+10 n^4+n^5)/8,{n,0,40}] (* or *) Table[Times@@Range[n,n+4]/8,{n,0,40}] (* Harvey P. Dale, Mar 06 2024 *)
  • PARI
    a(n)=n*(n+1)*(n+2)*(n+3)*(n+4)/8 \\ Charles R Greathouse IV, Aug 14 2017

Formula

a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)/8.
G.f.: 15*x/(1-x)^6. - Colin Barker, Jun 25 2012
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Eric W. Weisstein, Aug 14 2017
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = 16*log(2)/3 - 131/36. (End)

Extensions

Offset corrected by Eric W. Weisstein, Aug 14 2017

A054647 Number of labeled pure 2-complexes on n nodes (0-simplexes) with 4 2-simplexes and 12 1-simplexes.

Original entry on oeis.org

30, 2310, 42840, 391545, 2375100, 10980585, 41761720, 136963255, 399689290, 1060984925, 2603641040, 5979294230, 12973080120, 26794003110, 53000811600, 100914240770, 185718969590, 331524753560, 575738427880, 975199600375, 1614655942900, 2618302433175
Offset: 6

Views

Author

Vladeta Jovovic, Apr 16 2000

Keywords

Comments

Number of {T_1,T_2,...,T_k} where T_i,i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=4,l=12.
Numbers of sets of 4 triangles that are pairwise edge-disjoint in the complete graph K_n. - Julian Allagan, Mar 08 2025

References

  • Julian Allagan, Edge-Disjoint Triangle Packings in Complete Graphs: Recurrence Relations and Closed Formulas (submitted 2025)
  • V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.

Crossrefs

Formula

a(n) = 30*C(n, 6)+2100*C(n, 7)+25200*C(n, 8)+86625*C(n, 9)+116550*C(n, 10)+69300*C(n, 11)+15400*C(n, 12) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n^6+3*n^5-86*n^4-240*n^3+2704*n^2+5232*n-34128)/31104.
G.f.: 5*x^6*(169*x^6-1119*x^5+2535*x^4-1245*x^3-3030*x^2-384*x-6)/(x-1)^13. [Colin Barker, Jun 22 2012]

Extensions

More terms from James Sellers, Apr 16 2000

A331434 Column 2 of triangle in A331431.

Original entry on oeis.org

30, -180, 630, -1680, 3780, -7560, 13860, -23760, 38610, -60060, 90090, -131040, 185640, -257040, 348840, -465120, 610470, -790020, 1009470, -1275120, 1593900, -1973400, 2421900, -2948400, 3562650, -4275180, 5097330, -6041280, 7120080, -8347680, 9738960
Offset: 0

Views

Author

N. J. A. Sloane, Jan 17 2020

Keywords

Comments

Apart from the signs, essentially the same as A054559. - Georg Fischer, Jan 18 2020

Crossrefs

Programs

  • Magma
    [30*(-1)^n*Binomial(n+5, 5): n in [0..50]]; // G. C. Greubel, Mar 22 2022
    
  • Mathematica
    CoefficientList[Series[30/(1+x)^6, {x, 0, 30}], x] (* Georg Fischer, Jan 18 2020 *)
  • Sage
    [30*(-1)^n*binomial(n+5, 5) for n in (0..50)] # G. C. Greubel, Mar 22 2022

Formula

G.f.: 30/(1+x)^6. - Georg Fischer, Jan 18 2020
From G. C. Greubel, Mar 22 2022: (Start)
a(n) = 30*(-1)^n*binomial(n+5, 5).
a(n) = 30*(-1)^n*A000389(n+5).
E.g.f.: (1/4)*(120 - 600*x + 600*x^2 - 200*x^3 + 25*x^4 - x^5)*exp(-x). (End)

Extensions

a(0) changed to 30, and more terms from Georg Fischer, Jan 18 2020

A185669 a(n) = 4*n^2 + 3*n + 2.

Original entry on oeis.org

2, 9, 24, 47, 78, 117, 164, 219, 282, 353, 432, 519, 614, 717, 828, 947, 1074, 1209, 1352, 1503, 1662, 1829, 2004, 2187, 2378, 2577, 2784, 2999, 3222, 3453, 3692, 3939, 4194, 4457, 4728, 5007, 5294, 5589, 5892, 6203, 6522, 6849, 7184, 7527, 7878, 8237, 8604, 8979, 9362, 9753, 10152, 10559, 10974, 11397, 11828
Offset: 0

Views

Author

Paul Curtz, Feb 09 2011

Keywords

Comments

Natural numbers A000027 written clockwise as a square spiral:
.
43--44--45--46--47--48--49
|
42 21--22--23--24--25--26
| | |
41 20 7---8---9--10 27
| | | | |
40 19 6 1---2 11 28
| | | | | |
39 18 5---4---3 12 29
| | | |
38 17--16--15--14--13 30
| |
37--36--35--34--33--32--31
.
Walking in straight lines away from the center:
1, 2, 11, ... = A054552(n) = 1 -3*n+4*n^2,
1, 8, 23, ... = A033951(n) = 1 +3*n+4*n^2,
1, 3, 13, ... = A054554(n+1) = 1 -2*n-4*n^2,
1, 7, 21, ... = A054559(n+1) = 1 +2*n+4*n^2,
1, 4, 15, ... = A054556(n+1) = 1 -n+4*n^2,
1, 6, 19, ... = A054567(n+1) = 1 +n+4*n^2,
1, 5, 17, ... = A053755(n) = 1 +4*n^2,
1, 9, 25, ... = A016754(n) = 1 +4*n+4*n^2 = (1+2*n)^2,
2, 8, 22, ... = 2*A084849(n) = 2 +2*n+4*n^2,
2, 12, 30, ... = A002939(n+1) = 2 +6*n+4*n^2,
2, 9, 24, ... = a(n) = 2 +3*n+4*n^2,
2, 10, 26, ... = A069894(n) = 2 +4*n+4*n^2,
3, 11, 27, ... = A164897(n) = 3 +4*n+4*n^2,
3, 12, 29, ... = A054552(n+1)+1 = 3 +5*n+4*n^2,
3, 14, 33, ... = A033991(n+1) = 3 +7*n+4*n^2,
3, 15, 35, ... = A000466(n+1) = 3 +8*n+4*n^2,
4, 14, 32, ... = 2*A130883(n+1) = 4 +6*n+4*n^2,
4, 16, 36, ... = A016742(n+1) = 4 +8*n+4*n^2 = (2+2*n)^2,
5, 18, 39, ... = A007742(n+1) = 5 +9*n+4*n^2,
5, 19, 41, ... = A125202(n+2) = 5+10*n+4*n^2.

Programs

Formula

a(n) = a(n-1) + 8*n - 1.
a(n) = 2*a(n-1) - a(n-2) + 8.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (2 +3*x +3*x^2)/(1-x)^3 . - R. J. Mathar, Feb 11 2011
a(n) = A033954(n) + 2. - Bruno Berselli, Apr 10 2011
E.g.f.: (4*x^2 + 7*x + 2)*exp(x). - G. C. Greubel, Jul 09 2017
Showing 1-7 of 7 results.