A054569 a(n) = 4*n^2 - 6*n + 3.
1, 7, 21, 43, 73, 111, 157, 211, 273, 343, 421, 507, 601, 703, 813, 931, 1057, 1191, 1333, 1483, 1641, 1807, 1981, 2163, 2353, 2551, 2757, 2971, 3193, 3423, 3661, 3907, 4161, 4423, 4693, 4971, 5257, 5551, 5853, 6163, 6481, 6807, 7141, 7483, 7833, 8191
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Robert G. Wilson v, Cover of the March 1964 issue of Scientific American
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Programs
-
GAP
List([1..50], n-> 4*n^2-6*n+3); # G. C. Greubel, Jul 04 2019
-
Magma
[4*n^2-6*n+3: n in [1..50]]; // G. C. Greubel, Jul 04 2019
-
Mathematica
f[n_]:= 4*n^2-6*n+3; Array[f, 50] (* Vladimir Joseph Stephan Orlovsky, Sep 02 2008 *) LinearRecurrence[{3,-3,1},{1,7,21},50] (* Harvey P. Dale, Nov 17 2012 *)
-
PARI
a(n)=4*n^2-6*n+3 \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[4*n^2-6*n+3 for n in (1..50)] # G. C. Greubel, Jul 04 2019
Formula
a(n+1) = 4*n^2 + 2*n + 1. - Paul Barry, Apr 02 2003
a(n) = 4*n^2 - 6*n+3 - 3*0^n (with leading zero). - Paul Barry, Jun 11 2003
Binomial transform of [1, 6, 8, 0, 0, 0, ...]. - Gary W. Adamson, Dec 28 2007
a(n) = 8*n + a(n-1) - 10 (with a(1)=1). - Vincenzo Librandi, Aug 07 2010
From Colin Barker, Mar 23 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(1+x)*(1+3*x)/(1-x)^3. (End)
E.g.f.: -3 + (3 - 2*x + 4*x^2)*exp(x). - G. C. Greubel, Jul 04 2019
Sum_{n>=1} 1/a(n) = A339237. - R. J. Mathar, Jan 22 2021
Extensions
Edited by Frank Ellermann, Feb 24 2002
Comments