cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054599 a(n) = Sum_{d|n} d*2^(n/d - 1).

Original entry on oeis.org

0, 1, 4, 7, 16, 21, 52, 71, 160, 277, 564, 1035, 2176, 4109, 8348, 16467, 33088, 65553, 131740, 262163, 525456, 1048817, 2099244, 4194327, 8393344, 16777321, 33562676, 67109695, 134234480, 268435485, 536905572, 1073741855, 2147549824
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Examples

			G.f. = x + 4*x^2 + 7*x^3 + 16*x^4 + 21*x^5 + 52*x^6 + 71*x^7 + 160*x^8 + 277*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    {0}~Join~Table[DivisorSum[n, 2^(n/# - 1) # &], {n, 1, 20}] (* Vladimir Reshetnikov, Nov 20 2015 *)
    Table[SeriesCoefficient[-Log[-QPochhammer[2, x]] n/2, {x, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • PARI
    a(n) = if (n<1, 0, sumdiv(n, d, d*2^(n/d - 1))); \\ Michel Marcus, Nov 21 2015

Formula

G.f.: Sum_{n>0} n*x^n/(1-2*x^n). - Vladeta Jovovic, Oct 27 2002
G.f.: Sum_{k>=1} 2^(k-1)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Sep 10 2019
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Oct 16 2019