cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A322200 L.g.f.: L(x,y) = log( Product_{n>=1} 1/(1 - (x^n + y^n)) ), where L(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k / (n+k) such that L(0,0) = 0, as a symmetric square table of coefficients T(n,k) read by antidiagonals starting with T(0,0) = 0.

Original entry on oeis.org

0, 1, 1, 3, 2, 3, 4, 3, 3, 4, 7, 4, 10, 4, 7, 6, 5, 10, 10, 5, 6, 12, 6, 21, 26, 21, 6, 12, 8, 7, 21, 35, 35, 21, 7, 8, 15, 8, 36, 56, 90, 56, 36, 8, 15, 13, 9, 36, 93, 126, 126, 93, 36, 9, 13, 18, 10, 55, 120, 230, 262, 230, 120, 55, 10, 18, 12, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 12, 28, 12, 78, 232, 537, 792, 994, 792, 537, 232, 78, 12, 28, 14, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 14, 24, 14, 105, 364, 1043, 2002, 3073, 3446, 3073, 2002, 1043, 364, 105, 14, 24, 24, 15, 105, 470, 1365, 3018, 5035, 6435, 6435, 5035, 3018, 1365, 470, 105, 15, 24, 31, 16, 136, 560, 1892, 4368, 8120, 11440, 13050, 11440, 8120, 4368, 1892, 560, 136, 16, 31
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2018

Keywords

Examples

			L.g.f.: L(x,y) = (x + y)/1 + (3*x^2 + 2*x*y + 3*y^2)/2 + (4*x^3 + 3*x^2*y + 3*x*y^2 + 4*y^3)/3 + (7*x^4 + 4*x^3*y + 10*x^2*y^2 + 4*x*y^3 + 7*y^4)/4 + (6*x^5 + 5*x^4*y + 10*x^3*y^2 + 10*x^2*y^3 + 5*x*y^4 + 6*y^5)/5 + (12*x^6 + 6*x^5*y + 21*x^4*y^2 + 26*x^3*y^3 + 21*x^2*y^4 + 6*x*y^5 + 12*y^6)/6 + (8*x^7 + 7*x^6*y + 21*x^5*y^2 + 35*x^4*y^3 + 35*x^3*y^4 + 21*x^2*y^5 + 7*x*y^6 + 8*y^7)/7 + (15*x^8 + 8*x^7*y + 36*x^6*y^2 + 56*x^5*y^3 + 90*x^4*y^4 + 56*x^3*y^5 + 36*x^2*y^6 + 8*x*y^7 + 15*y^8)/8 + ...
such that
exp( L(x,y) ) = Product_{n>=1} 1/(1 - (x^n + y^n)), or
L(x,y) = Sum_{n>=1} -log(1 - (x^n + y^n)),
where
L(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k/(n+k),
in which the constant term is taken to be zero: L(0,0) = 0.
SQUARE TABLE.
The square table of coefficients T(n,k) of x^n*y^k/(n+k) in L(x,y) begins
0, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, ...;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...;
3, 3, 10, 10, 21, 21, 36, 36, 55, 55, 78, 78, 105, ...;
4, 4, 10, 26, 35, 56, 93, 120, 165, 232, 286, 364, ...;
7, 5, 21, 35, 90, 126, 230, 330, 537, 715, 1043, 1365, ...;
6, 6, 21, 56, 126, 262, 462, 792, 1287, 2002, 3018, ...;
12, 7, 36, 93, 230, 462, 994, 1716, 3073, 5035, 8120, ...;
8, 8, 36, 120, 330, 792, 1716, 3446, 6435, 11440, 19448, ...;
15, 9, 55, 165, 537, 1287, 3073, 6435, 13050, 24310, 44010, ...;
13, 10, 55, 232, 715, 2002, 5035, 11440, 24310, 48698, 92378, ...;
18, 11, 78, 286, 1043, 3018, 8120, 19448, 44010, 92378, 185310, ...;
12, 12, 78, 364, 1365, 4368, 12376, 31824, 75582, 167960, 352716, ...; ...
TRIANGLE.
Alternatively, this sequence may be written as a triangle, starting as
0;
1, 1;
3, 2, 3;
4, 3, 3, 4;
7, 4, 10, 4, 7;
6, 5, 10, 10, 5, 6;
12, 6, 21, 26, 21, 6, 12;
8, 7, 21, 35, 35, 21, 7, 8;
15, 8, 36, 56, 90, 56, 36, 8, 15;
13, 9, 36, 93, 126, 126, 93, 36, 9, 13;
18, 10, 55, 120, 230, 262, 230, 120, 55, 10, 18;
12, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 12;
28, 12, 78, 232, 537, 792, 994, 792, 537, 232, 78, 12, 28;
14, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 14;
24, 14, 105, 364, 1043, 2002, 3073, 3446, 3073, 2002, 1043, 364, 105, 14, 24;
24, 15, 105, 470, 1365, 3018, 5035, 6435, 6435, 5035, 3018, 1365, 470, 105, 15, 24;
31, 16, 136, 560, 1892, 4368, 8120, 11440, 13050, 11440, 8120, 4368, 1892, 560, 136, 16, 31; ...
where L(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n-k,k)*x^(n-k)*y^k / n.
		

Crossrefs

Cf. A322210 (exp), A322201 (main diagonal), A322203, A322205, A322207, A322209.
Cf. A054598 (antidiagonal sums), A054599.

Programs

  • PARI
    {L = sum(n=1,61, -log(1 - (x^n + y^n) +O(x^61) +O(y^61)) );}
    {T(n,k) = polcoeff( (n+k)*polcoeff( L,n,x),k,y)}
    for(n=0,16, for(k=0,16, print1( T(n,k),", ") );print(""))

Formula

Sum_{k=0..n} T(n-k,k) = A054598(n) = Sum_{d|n} d*2^(n/d).
Sum_{k=0..n} T(n-k,k) * k/n = A054599(n) = Sum_{d|n} d*2^(n/d - 1).
Sum_{k=0..n} T(n-k,k) * 2^k = A322209(n) = [x^n] log( Product_{k>=1} 1/(1 - (2^k+1)*x^k) ) for n >= 0.
FORMULAS FOR TERMS.
T(n,k) = T(k,n) for n >= 0, k >= 0.
T(0,0) = 0.
T(n,0) = sigma(n) for n > 0.
T(0,k) = sigma(k) for n > 0.
T(n,1) = n+1, for n >= 0.
T(1,k) = k+1, for k >= 0.
T(2*n,2) = T(2*n+1,2) = (n+1)*(2*n+3).
T(2,2*k) = T(2,2*k+1) = (k+1)*(2*k+3).
COLUMN GENERATING FUNCTIONS.
Row 0: log(P(x)), where P(x) = Product_{n>=1} 1/(1 - x^n).
Row 1: 1/(1-x)^2.
Row 2: (3 + x^2)/((1-x)*(1-x^2)^2).
Row 3: (4 - 4*x + 6*x^2 + 2*x^3 + x^4)/((1-x)^2*(1-x^3)^2).
Row 4: (7 - 9*x + 11*x^2 + 7*x^3 + 9*x^4 + x^5 + 5*x^6 + x^7)/((1-x)^2*(1-x^2)*(1-x^4)^2).
Row 5: (6 - 18*x + 33*x^2 - 16*x^3 + 10*x^4 + 4*x^5 + 3*x^6 + 2*x^7 + x^8)/((1-x)^3*(1-x^5)^2).
Row 6: (12 - 41*x + 56*x^2 + 13*x^3 - 49*x^4 - 20*x^5 + 105*x^6 - 126*x^7 + 85*x^8 - 62*x^9 + 24*x^10 - 28*x^11 + 39*x^12 - 25*x^13 + 15*x^14 + x^15 + x^16) / ((1-x)^4*(1-x^2)^2*(1-x^3)*(1-x^6)^2).

A083413 a(n) = Sum_{d|n} d*2^(d-1) for n > 0.

Original entry on oeis.org

0, 1, 5, 13, 37, 81, 209, 449, 1061, 2317, 5205, 11265, 24817, 53249, 115141, 245853, 525349, 1114113, 2361809, 4980737, 10490997, 22020557, 46148613, 96468993, 201352433, 419430481, 872468485, 1811941645, 3758211557, 7784628225, 16106378529, 33285996545
Offset: 0

Views

Author

N. J. A. Sloane, Jun 09 2003

Keywords

Crossrefs

Cf. A077272.
Cf. A054599.

Programs

  • Maple
    oo := 101: t1 := add(x^m/(m*(1-2*x^m)),m=1..oo): series(%,x,oo): t2 := seriestolist(%): A083413 := n -> t2[n+1]*n;
  • Mathematica
    CoefficientList[Series[Sum[x^k/(1-2*x^k)^2,{k,1,30}],{x,0,30}],x] (* Vaclav Kotesovec, Sep 09 2014 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,d*2^(d-1)))

Formula

Sum_{n > 0} a(n)*x^n/n = Sum_{m > 0} x^m/(m*(1-2*x^m)).
G.f.: Sum_{m > 0} x^m/(1-2*x^m)^2.
a(n) ~ n*2^(n-2). - Vaclav Kotesovec, Sep 09 2014
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(2^(k-1))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 20 2018

A054598 a(0)=0; for n>0, a(n) = Sum_{d|n} d*2^(n/d).

Original entry on oeis.org

0, 2, 8, 14, 32, 42, 104, 142, 320, 554, 1128, 2070, 4352, 8218, 16696, 32934, 66176, 131106, 263480, 524326, 1050912, 2097634, 4198488, 8388654, 16786688, 33554642, 67125352, 134219390, 268468960, 536870970, 1073811144, 2147483710, 4295099648, 8589940890
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Comments

Row sums of A322200, where A322200 describes Sum_{n>=1} -log(1 - (x^n + y^n)). - Paul D. Hanna, Dec 01 2018

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Series[-Log[-QPochhammer[2, x]], {x, 0, 60}], x][[n]] (n - 1), {n, 1, 60}] (* Benedict W. J. Irwin, Jun 23 2016 *)
  • PARI
    a(n) = sumdiv(n, d, d*2^(n/d)); \\ Michel Marcus, Jul 01 2016

Formula

L.g.f.: -log(Product_{ k>0 } (1-2*x^k)) = Sum_{ n>=0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jun 23 2016
G.f.: Sum_{k>=1} 2^k*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Oct 24 2018

A054601 a(n) = Sum_{d|n, d odd} d*2^(n/d - 1), a(0)=0.

Original entry on oeis.org

0, 1, 2, 7, 8, 21, 38, 71, 128, 277, 522, 1035, 2072, 4109, 8206, 16467, 32768, 65553, 131186, 262163, 524328, 1048817, 2097174, 4194327, 8388992, 16777321, 33554458, 67109695, 134217784, 268435485, 536872638, 1073741855, 2147483648
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if (n, sumdiv(n, d, if (d%2, d*2^(n/d - 1))), 0); \\ Michel Marcus, Mar 10 2021

Formula

G.f.: Sum_{k>0} (1-(-1)^k)/2*k*x^k/(1-2*x^k). - Vladeta Jovovic, Oct 17 2003

A308076 G.f. A(x) satisfies: A(x) = x + 2*A(x^2) + 4*A(x^3) + 8*A(x^4) + ... + 2^(k-1)*A(x^k) + ...

Original entry on oeis.org

1, 2, 4, 12, 16, 48, 64, 168, 272, 576, 1024, 2288, 4096, 8448, 16512, 33456, 65536, 132448, 262144, 526784, 1049088, 2101248, 4194304, 8399232, 16777472, 33570816, 67110976, 134252288, 268435456, 536942336, 1073741824, 2147618976, 4294975488, 8590196736, 17179871232
Offset: 1

Views

Author

Ilya Gutkovskiy, May 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 35; A[] = 0; Do[A[x] = x + Sum[2^(k - 1) A[x^k], {k, 2, terms}] + O[x]^(terms + 1) //Normal, terms + 1]; Rest[CoefficientList[A[x], x]]
    a[n_] := If[n == 1, n, Sum[If[d < n, 2^(n/d - 1) a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 35}]

Formula

a(1) = 1; a(n) = Sum_{d|n, d
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Oct 16 2019

A351405 a(1) = 1; a(n+1) = Sum_{d|n} 2^(n/d - 1) * a(d).

Original entry on oeis.org

1, 1, 3, 7, 17, 33, 75, 139, 289, 557, 1119, 2143, 4341, 8437, 16843, 33343, 66573, 132109, 264243, 526387, 1052549, 2101617, 4202031, 8396335, 16792705, 33570193, 67137403, 134248191, 268492033, 536927489, 1073853307, 2147595131, 4295180241, 8590155085
Offset: 1

Author

Ilya Gutkovskiy, Feb 10 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          add(2^((n-1)/d-1)*a(d), d=numtheory[divisors](n-1)))
        end:
    seq(a(n), n=1..34);  # Alois P. Heinz, Feb 10 2022
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[2^((n - 1)/d - 1) a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 34}]
    nmax = 34; A[] = 0; Do[A[x] = x (1 + Sum[2^(k - 1) A[x^k], {k, 1, nmax}]) + O[x]^(nmax + 1) //Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x * ( 1 + A(x) + 2 * A(x^2) + 4 * A(x^3) + ... + 2^(k-1) * A(x^k) + ... ).
G.f.: x * ( 1 + Sum_{n>=1} a(n) * x^n / (1 - 2 * x^n) ).
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Feb 18 2022

A359189 a(n) = Sum_{d|n} d * 3^(n/d-1).

Original entry on oeis.org

1, 5, 12, 37, 86, 276, 736, 2261, 6597, 19870, 59060, 177780, 531454, 1595816, 4783272, 14353429, 43046738, 129154113, 387420508, 1162301342, 3486786672, 10460471356, 31381059632, 94143540948, 282429536911, 847289672390, 2541865848120, 7625600676808
Offset: 1

Author

Seiichi Manyama, Dec 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 3^(n/#-1)*# &]; Array[a, 28] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d*3^(n/d-1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-3*x^k)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, 3^(k-1)*x^k/(1-x^k)^2))

Formula

G.f.: Sum_{k>=1} k * x^k/(1 - 3 * x^k).
G.f.: Sum_{k>=1} 3^(k-1) * x^k/(1 - x^k)^2.

A359190 a(n) = Sum_{d|n} d * 4^(n/d-1).

Original entry on oeis.org

1, 6, 19, 76, 261, 1074, 4103, 16536, 65593, 262686, 1048587, 4196644, 16777229, 67117098, 268436319, 1073774896, 4294967313, 17180003478, 68719476755, 274878432636, 1099511640197, 4398048608322, 17592186044439, 70368752620104, 281474976711961, 1125899940397134
Offset: 1

Author

Seiichi Manyama, Dec 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 4^(n/#-1)*# &]; Array[a, 26] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d*4^(n/d-1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k*x^k/(1-4*x^k)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, 4^(k-1)*x^k/(1-x^k)^2))

Formula

G.f.: Sum_{k>=1} k * x^k/(1 - 4 * x^k).
G.f.: Sum_{k>=1} 4^(k-1) * x^k/(1 - x^k)^2.

A318368 a(n) = Sum_{d|n} (-1)^(n/d+1)*d*2^(d-1).

Original entry on oeis.org

1, 3, 13, 27, 81, 183, 449, 987, 2317, 5043, 11265, 24399, 53249, 114243, 245853, 523227, 1114113, 2357175, 4980737, 10480587, 22020557, 46126083, 96468993, 201302799, 419430481, 872361987, 1811941645, 3757981275, 7784628225, 16105886823, 33285996545, 68718951387, 141733932045
Offset: 1

Author

Ilya Gutkovskiy, Aug 24 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1) d 2^(d - 1), {d, Divisors[n]}], {n, 33}]
    nmax = 33; Rest[CoefficientList[Series[Sum[k 2^(k - 1) x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 33; Rest[CoefficientList[Series[Log[Product[(1 + x^k)^(2^(k - 1)), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d+1)*d*2^(d-1)); \\ Michel Marcus, Aug 25 2018

Formula

G.f.: Sum_{k>=1} k*2^(k-1)*x^k/(1 + x^k).
L.g.f.: log(Product_{k>=1} (1 + x^k)^(2^(k-1))) = Sum_{n>=1} a(n)*x^n/n.
a(n) ~ n * 2^(n-1). - Vaclav Kotesovec, Aug 25 2018
Showing 1-9 of 9 results.