cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A054599 a(n) = Sum_{d|n} d*2^(n/d - 1).

Original entry on oeis.org

0, 1, 4, 7, 16, 21, 52, 71, 160, 277, 564, 1035, 2176, 4109, 8348, 16467, 33088, 65553, 131740, 262163, 525456, 1048817, 2099244, 4194327, 8393344, 16777321, 33562676, 67109695, 134234480, 268435485, 536905572, 1073741855, 2147549824
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Examples

			G.f. = x + 4*x^2 + 7*x^3 + 16*x^4 + 21*x^5 + 52*x^6 + 71*x^7 + 160*x^8 + 277*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    {0}~Join~Table[DivisorSum[n, 2^(n/# - 1) # &], {n, 1, 20}] (* Vladimir Reshetnikov, Nov 20 2015 *)
    Table[SeriesCoefficient[-Log[-QPochhammer[2, x]] n/2, {x, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • PARI
    a(n) = if (n<1, 0, sumdiv(n, d, d*2^(n/d - 1))); \\ Michel Marcus, Nov 21 2015

Formula

G.f.: Sum_{n>0} n*x^n/(1-2*x^n). - Vladeta Jovovic, Oct 27 2002
G.f.: Sum_{k>=1} 2^(k-1)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Sep 10 2019
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Oct 16 2019

A054598 a(0)=0; for n>0, a(n) = Sum_{d|n} d*2^(n/d).

Original entry on oeis.org

0, 2, 8, 14, 32, 42, 104, 142, 320, 554, 1128, 2070, 4352, 8218, 16696, 32934, 66176, 131106, 263480, 524326, 1050912, 2097634, 4198488, 8388654, 16786688, 33554642, 67125352, 134219390, 268468960, 536870970, 1073811144, 2147483710, 4295099648, 8589940890
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Comments

Row sums of A322200, where A322200 describes Sum_{n>=1} -log(1 - (x^n + y^n)). - Paul D. Hanna, Dec 01 2018

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Series[-Log[-QPochhammer[2, x]], {x, 0, 60}], x][[n]] (n - 1), {n, 1, 60}] (* Benedict W. J. Irwin, Jun 23 2016 *)
  • PARI
    a(n) = sumdiv(n, d, d*2^(n/d)); \\ Michel Marcus, Jul 01 2016

Formula

L.g.f.: -log(Product_{ k>0 } (1-2*x^k)) = Sum_{ n>=0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jun 23 2016
G.f.: Sum_{k>=1} 2^k*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Oct 24 2018

A054600 Sum_{d|n, d odd} d*2^(n/d).

Original entry on oeis.org

0, 2, 4, 14, 16, 42, 76, 142, 256, 554, 1044, 2070, 4144, 8218, 16412, 32934, 65536, 131106, 262372, 524326, 1048656, 2097634, 4194348, 8388654, 16777984, 33554642, 67108916, 134219390, 268435568, 536870970, 1073745276, 2147483710
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=With[{od=Select[Divisors[n],OddQ]},Total[od 2^(n/od)]]; Join[{0}, Array[f, 40]] (* Harvey P. Dale, Aug 31 2024 *)
Showing 1-3 of 3 results.