cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A184331 Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal 0..6 arrays.

Original entry on oeis.org

7, 28, 28, 119, 637, 119, 616, 19684, 19684, 616, 3367, 721525, 4484039, 721525, 3367, 19684, 28249228, 1153450872, 1153450872, 28249228, 19684, 117655, 1153470437, 316504102999, 2077059243301, 316504102999, 1153470437, 117655, 720916
Offset: 1

Views

Author

R. H. Hardin, Jan 11 2011

Keywords

Examples

			Table starts
       7         28          119           616         3367          19684
      28        637        19684        721525     28249228     1153470437
     119      19684      4484039    1153450872 316504102999 90467424400444
     616     721525   1153450872 2077059243301
    3367   28249228 316504102999
   19684 1153470437
  117655
		

Crossrefs

Columns 1-3 are A054626, A184329, A184330.

Programs

  • Mathematica
    T[n_, k_] := (1/(n*k))*Sum[Sum[EulerPhi[c]*EulerPhi[d]*7^(n*(k/LCM[c, d])), {d, Divisors[k]}], {c, Divisors[n]}]; Table[T[n - k + 1, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Andrew Howroyd *)
  • PARI
    T(n, k) = (1/(n*k)) * sumdiv(n, c, sumdiv(k, d, eulerphi(c) * eulerphi(d) * 7^(n*k/lcm(c,d)))); \\ Andrew Howroyd, Sep 27 2017

Formula

T(n,k) = (1/(n*k)) * Sum_{c|n} Sum_{d|k} phi(c) * phi(d) * 7^(n*k/lcm(c,d)). - Andrew Howroyd, Sep 27 2017

A054614 a(n) = Sum_{d|n} phi(d)*7^(n/d).

Original entry on oeis.org

0, 7, 56, 357, 2464, 16835, 118104, 823585, 5767328, 40354335, 282492280, 1977326813, 13841410464, 96889010491, 678223896728, 4747561544985, 33232936339456, 232630513987319, 1628413638500376, 11398895185373269
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Crossrefs

Column k=7 of A185651.
Cf. A054626.

Programs

  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*7^(n/d)); \\ Michel Marcus, Jul 11 2021

Formula

a(n) = Sum_{k=1..n} 7^gcd(n,k). - Ilya Gutkovskiy, Apr 16 2021

A121775 T(n, k) = Sum_{d|n} phi(n/d)*binomial(d,k) for n>0, T(0, 0) = 1. Triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 5, 3, 1, 4, 8, 7, 4, 1, 5, 9, 10, 10, 5, 1, 6, 15, 20, 21, 15, 6, 1, 7, 13, 21, 35, 35, 21, 7, 1, 8, 20, 36, 60, 71, 56, 28, 8, 1, 9, 21, 42, 86, 126, 126, 84, 36, 9, 1, 10, 27, 59, 130, 215, 253, 210, 120, 45, 10, 1, 11, 21, 55, 165, 330, 462, 462, 330, 165, 55
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2006

Keywords

Comments

For n>0, (1/n)*Sum_{k=0..n} T(n,k)*(c-1)^k is the number of n-bead necklaces with c colors. See the cross references.

Examples

			Triangle begins:
[ 0]  1;
[ 1]  1,  1;
[ 2]  2,  3,  1;
[ 3]  3,  5,  3,   1;
[ 4]  4,  8,  7,   4,   1;
[ 5]  5,  9, 10,  10,   5,   1;
[ 6]  6, 15, 20,  21,  15,   6,   1;
[ 7]  7, 13, 21,  35,  35,  21,   7,   1;
[ 8]  8, 20, 36,  60,  71,  56,  28,   8,  1;
[ 9]  9, 21, 42,  86, 126, 126,  84,  36,  9,  1;
[10] 10, 27, 59, 130, 215, 253, 210, 120, 45, 10, 1;
		

Crossrefs

Cf. A053635 (row sums), A121776 (antidiagonal sums), A054630, A327029.
Cf. A000031 (c=2), A001867 (c=3), A001868 (c=4), A001869 (c=5), A054625 (c=6), A054626 (c=7), A054627 (c=8), A054628 (c=9), A054629 (c=10).

Programs

  • PARI
    T(n,k)=if(n
    				
  • SageMath
    # uses[DivisorTriangle from A327029]
    DivisorTriangle(euler_phi, binomial, 13) # Peter Luschny, Aug 24 2019
Showing 1-3 of 3 results.