A054654 Triangle of Stirling numbers of 1st kind, S(n, n-k), n >= 0, 0 <= k <= n.
1, 1, 0, 1, -1, 0, 1, -3, 2, 0, 1, -6, 11, -6, 0, 1, -10, 35, -50, 24, 0, 1, -15, 85, -225, 274, -120, 0, 1, -21, 175, -735, 1624, -1764, 720, 0, 1, -28, 322, -1960, 6769, -13132, 13068, -5040, 0
Offset: 0
Examples
Matrix begins: 1, 0, 0, 0, 0, 0, 0, 0, 0, ... 0, 1, -1, 2, -6, 24, -120, 720, -5040, ... 0, 0, 1, -3, 11, -50, 274, -1764, 13068, ... 0, 0, 0, 1, -6, 35, -225, 1624, -13132, ... 0, 0, 0, 0, 1, -10, 85, -735, 6769, ... 0, 0, 0, 0, 0, 1, -15, 175, -1960, ... 0, 0, 0, 0, 0, 0, 1, -21, 322, ... 0, 0, 0, 0, 0, 0, 0, 1, -28, ... 0, 0, 0, 0, 0, 0, 0, 0, 1, ... ... Triangle begins: 1; 1, 0; 1, -1, 0; 1, -3, 2, 0; 1, -6, 11, -6, 0; 1, -10, 35, -50, 24, 0; 1, -15, 85, -225, 274, -120, 0; 1, -21, 175, -735, 1624, -1764, 720, 0; ...
References
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 18, table 18:6:1 at page 152.
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Eric Weisstein's World of Mathematics, Pochhammer Symbol.
- Eric Weisstein's World of Mathematics, Rising Factorial.
- Eric Weisstein's World of Mathematics, FallingFactorial.
Crossrefs
Programs
-
Haskell
a054654 n k = a054654_tabl !! n !! k a054654_row n = a054654_tabl !! n a054654_tabl = map reverse a048994_tabl -- Reinhard Zumkeller, Mar 18 2014
-
Maple
a054654_row := proc(n) local k; seq(coeff(expand((-1)^n*pochhammer (-x,n)),x,n-k),k=0..n) end: # Peter Luschny, Nov 28 2010 seq(seq(Stirling1(n, n-k), k=0..n), n=0..8); # Peter Luschny, Feb 21 2021
-
Mathematica
row[n_] := Reverse[ CoefficientList[ (-1)^n*Pochhammer[-x, n], x] ]; Flatten[ Table[ row[n], {n, 0, 8}]] (* Jean-François Alcover, Feb 16 2012, after Maple *) Table[StirlingS1[n,n-k],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jun 17 2023 *)
-
PARI
T(n,k)=polcoeff(n!*binomial(x,n), n-k)
Formula
n!*binomial(x, n) = Sum_{k=0..n} T(n, k)*x^(n-k).
(In Maple notation:) Matrix product A*B of matrix A[i,j]:=binomial(j-1,i-1) with i = 1 to p+1, j = 1 to p+1, p=8 and of matrix B[i,j]:=stirling1(j,i) with i from 1 to d, j from 1 to d, d=9.
T(n, k) = (-1)^k*Sum_{j=0..k} E2(k, j)*binomial(n+j-1, 2*k), where E2(k, j) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 21 2021
Extensions
Additional comments from Thomas Wieder, Dec 29 2006
Edited by N. J. A. Sloane at the suggestion of Eric W. Weisstein, Jan 20 2008
Comments