A054684 Numbers whose sum of digits is odd.
1, 3, 5, 7, 9, 10, 12, 14, 16, 18, 21, 23, 25, 27, 29, 30, 32, 34, 36, 38, 41, 43, 45, 47, 49, 50, 52, 54, 56, 58, 61, 63, 65, 67, 69, 70, 72, 74, 76, 78, 81, 83, 85, 87, 89, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 111, 113, 115, 117, 119, 120, 122, 124, 126, 128, 131
Offset: 1
Examples
1, 3, 5, 7, 9, 10(1), 12(3), 14(5), 16(7), 18(9), 21(3) and so on.
Links
Crossrefs
Programs
-
Maple
[seq(`if`(convert(convert(2*n-1,base,10),`+`)::odd, 2*n-1, 2*n-2), n=1..501)];
-
Mathematica
Select[Range[200],OddQ[Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Nov 27 2021 *)
-
PARI
is(n)=my(d=digits(n));sum(i=1,#d,d[i])%2 \\ Charles R Greathouse IV, Aug 09 2013
-
PARI
isok(m) = sumdigits(m) % 2; \\ Michel Marcus, Nov 06 2022
-
PARI
a(n) = n=2*(n-1); n + !(sumdigits(n)%2); \\ Kevin Ryde, Nov 07 2022
-
Python
def ok(n): return sum(map(int, str(n)))&1 print([k for k in range(132) if ok(k)]) # Michael S. Branicky, Nov 06 2022
Formula
a(n) = n * 2 - 1 for the first 5 numbers; a(n) = n * 2 for the second 5 numbers.
From Robert Israel, Jun 27 2017: (Start)
a(n) = 2*n-2 if floor((n-1)/5) is in the sequence, 2*n-1 if not.
G.f. g(x) satisfies g(x) = (1-x)*(1+x+x^2+x^3+x^4)^2*g(x^10)/x^9 + x^2*(2+x^4+3*x^5-x^9+3*x^10)/((1-x)*(1+x^5))^2.
(End)
Extensions
More terms from James Sellers, Apr 19 2000
Comments