cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054684 Numbers whose sum of digits is odd.

Original entry on oeis.org

1, 3, 5, 7, 9, 10, 12, 14, 16, 18, 21, 23, 25, 27, 29, 30, 32, 34, 36, 38, 41, 43, 45, 47, 49, 50, 52, 54, 56, 58, 61, 63, 65, 67, 69, 70, 72, 74, 76, 78, 81, 83, 85, 87, 89, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 111, 113, 115, 117, 119, 120, 122, 124, 126, 128, 131
Offset: 1

Views

Author

Odimar Fabeny, Apr 19 2000

Keywords

Comments

Union of A179083 and A179085; A179081(a(n)) = 1. - Reinhard Zumkeller, Jun 28 2010
Equivalently, integers with an odd number of odd digits. - Bernard Schott, Nov 06 2022

Examples

			1, 3, 5, 7, 9, 10(1), 12(3), 14(5), 16(7), 18(9), 21(3) and so on.
		

Crossrefs

Cf. A054683, A137233 (number of n-digits terms).
Cf. A356929 (even number of even digits).
A294601 (exactly one odd decimal digit) is a subsequence.

Programs

  • Maple
    [seq(`if`(convert(convert(2*n-1,base,10),`+`)::odd, 2*n-1, 2*n-2), n=1..501)];
  • Mathematica
    Select[Range[200],OddQ[Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Nov 27 2021 *)
  • PARI
    is(n)=my(d=digits(n));sum(i=1,#d,d[i])%2 \\ Charles R Greathouse IV, Aug 09 2013
    
  • PARI
    isok(m) = sumdigits(m) % 2; \\ Michel Marcus, Nov 06 2022
    
  • PARI
    a(n) = n=2*(n-1); n + !(sumdigits(n)%2); \\ Kevin Ryde, Nov 07 2022
    
  • Python
    def ok(n): return sum(map(int, str(n)))&1
    print([k for k in range(132) if ok(k)]) # Michael S. Branicky, Nov 06 2022

Formula

a(n) = n * 2 - 1 for the first 5 numbers; a(n) = n * 2 for the second 5 numbers.
From Robert Israel, Jun 27 2017: (Start)
a(n) = 2*n-2 if floor((n-1)/5) is in the sequence, 2*n-1 if not.
G.f. g(x) satisfies g(x) = (1-x)*(1+x+x^2+x^3+x^4)^2*g(x^10)/x^9 + x^2*(2+x^4+3*x^5-x^9+3*x^10)/((1-x)*(1+x^5))^2.
(End)

Extensions

More terms from James Sellers, Apr 19 2000