cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054724 Triangle of numbers of inequivalent Boolean functions of n variables with exactly k nonzero values (atoms) under action of complementing group.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 7, 14, 7, 7, 1, 1, 1, 1, 15, 35, 140, 273, 553, 715, 870, 715, 553, 273, 140, 35, 15, 1, 1, 1, 1, 31, 155, 1240, 6293, 28861, 105183, 330460, 876525, 2020239, 4032015, 7063784, 10855425, 14743445, 17678835, 18796230
Offset: 0

Views

Author

Vladeta Jovovic, Apr 20 2000

Keywords

Examples

			Triangle begins:
  k    0  1  2  3   4   5   6   7   8   9  10  11  12 13 14 15 16      sums
n
0      1  1                                                              2
1      1  1  1                                                           3
2      1  1  3  1   1                                                    7
3      1  1  7  7  14   7   7   1   1                                   46
4      1  1 15 35 140 273 553 715 870 715 553 273 140 35 15  1  1     4336
...
		

References

  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 143.

Crossrefs

Row sums give A000231. Cf. A052265.

Programs

  • Maple
    T:= (n, k)-> (binomial(2^n, k)+`if`(k::odd, 0,
                 (2^n-1)*binomial(2^(n-1), k/2)))/2^n:
    seq(seq(T(n, k), k=0..2^n), n=0..5);  # Alois P. Heinz, Jan 27 2023
  • Mathematica
    rows = 5; t[n_, k_?OddQ] := 2^-n*Binomial[2^n, k]; t[n_, k_?EvenQ] := 2^-n*(Binomial[2^n, k] + (2^n-1)*Binomial[2^(n-1), k/2]); Flatten[ Table[ t[n, k], {n, 1, rows}, {k, 0, 2^n}]] (* Jean-François Alcover, Nov 21 2011, after Vladeta Jovovic *)
    T[n_, k_]:= If[OddQ[k], Binomial[2^n, k]/2^n, 2^(-n)*(Binomial[2^n, k] + (2^n - 1)*Binomial[2^(n - 1), k/2])]; Table[T[n,k], {n,1,5}, {k,0,2^n}] //Flatten  (* G. C. Greubel, Feb 15 2018 *)

Formula

T(n,k) = 2^(-n)*C(2^n, k) if k is odd and 2^(-n)*(C(2^n, k) + (2^n-1)*C(2^(n-1), k/2)) if k is even.

Extensions

Two terms for row n=0 prepended by Alois P. Heinz, Jan 27 2023