A054724 Triangle of numbers of inequivalent Boolean functions of n variables with exactly k nonzero values (atoms) under action of complementing group.
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 7, 14, 7, 7, 1, 1, 1, 1, 15, 35, 140, 273, 553, 715, 870, 715, 553, 273, 140, 35, 15, 1, 1, 1, 1, 31, 155, 1240, 6293, 28861, 105183, 330460, 876525, 2020239, 4032015, 7063784, 10855425, 14743445, 17678835, 18796230
Offset: 0
Examples
Triangle begins: k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 sums n 0 1 1 2 1 1 1 1 3 2 1 1 3 1 1 7 3 1 1 7 7 14 7 7 1 1 46 4 1 1 15 35 140 273 553 715 870 715 553 273 140 35 15 1 1 4336 ...
References
- M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 143.
Links
Programs
-
Maple
T:= (n, k)-> (binomial(2^n, k)+`if`(k::odd, 0, (2^n-1)*binomial(2^(n-1), k/2)))/2^n: seq(seq(T(n, k), k=0..2^n), n=0..5); # Alois P. Heinz, Jan 27 2023
-
Mathematica
rows = 5; t[n_, k_?OddQ] := 2^-n*Binomial[2^n, k]; t[n_, k_?EvenQ] := 2^-n*(Binomial[2^n, k] + (2^n-1)*Binomial[2^(n-1), k/2]); Flatten[ Table[ t[n, k], {n, 1, rows}, {k, 0, 2^n}]] (* Jean-François Alcover, Nov 21 2011, after Vladeta Jovovic *) T[n_, k_]:= If[OddQ[k], Binomial[2^n, k]/2^n, 2^(-n)*(Binomial[2^n, k] + (2^n - 1)*Binomial[2^(n - 1), k/2])]; Table[T[n,k], {n,1,5}, {k,0,2^n}] //Flatten (* G. C. Greubel, Feb 15 2018 *)
Formula
T(n,k) = 2^(-n)*C(2^n, k) if k is odd and 2^(-n)*(C(2^n, k) + (2^n-1)*C(2^(n-1), k/2)) if k is even.
Extensions
Two terms for row n=0 prepended by Alois P. Heinz, Jan 27 2023