A000231 Number of inequivalent Boolean functions of n variables under action of complementing group.
2, 3, 7, 46, 4336, 134281216, 288230380379570176, 2658455991569831764110243006194384896, 452312848583266388373324160190187140390789016525312000869601987902398529536
Offset: 0
References
- M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 143.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (Includes this sequence, correctly, although in the Preface on page viii 4336 is mis-typed as 4436).
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11
- R. L. Ashenhurst, The application of counting techniques, Proc. ACM Nat. Mtg., Pittsburg, 1952, 293-305.
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
- M. A. Harrison, The number of transitivity sets of Boolean functions, J. Soc. Indust. Appl. Math., 11 (1963), 806-828.
- Index entries for sequences related to Boolean functions
Programs
-
Maple
a:= n-> (2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n: seq(a(n), n=0..8); # Alois P. Heinz, Jan 27 2023
-
Mathematica
Table[(2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n,{n,10}] (* Harvey P. Dale, Jun 21 2011 *)
-
PARI
a(n)=(2^(2^n-n)+(2^n-1)*2^(2^(n-1)-n)) \\ Charles R Greathouse IV, Jul 29 2016
Formula
a(n) = (2^(2^n)+(2^n-1)*2^(2^(n-1)))/2^n.
Extensions
More terms from Vladeta Jovovic, Apr 20 2000
a(0)=2 prepended by Alois P. Heinz, Jan 27 2023
Comments