A054733 Triangle of number of (weakly) connected unlabeled digraphs with n nodes and k arcs (n >=2, k >= 1).
1, 1, 0, 3, 4, 4, 1, 1, 0, 0, 8, 22, 37, 47, 38, 27, 13, 5, 1, 1, 0, 0, 0, 27, 108, 326, 667, 1127, 1477, 1665, 1489, 1154, 707, 379, 154, 61, 16, 5, 1, 1, 0, 0, 0, 0, 91, 582, 2432, 7694, 19646, 42148, 77305, 122953, 170315, 206982, 220768, 207301, 171008
Offset: 2
Examples
1,1; 0,3,4,4,1,1; 0,0,8,22,37,47,38,27,13,5,1,1; the last batch giving the numbers of connected digraphs with 4 nodes and from 1 to 12 arcs.
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..2661 (rows 2..20)
- R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 (2017) Table 75.
Crossrefs
Programs
-
PARI
InvEulerMTS(p)={my(n=serprec(p,x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g) )) * prod(i=1, #v, my(c=v[i]); t(c)^(c-1))} G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!} row(n)={Vecrev(polcoef(InvEulerMTS(sum(i=0, n, G(i, y)*x^i, O(x*x^n))), n)/y)} { for(n=2, 6, print(row(n))) } \\ Andrew Howroyd, Jan 28 2022