A054743 If n = Product p_i^e_i then p_i < e_i (where e_i > 0) for all i.
1, 8, 16, 32, 64, 81, 128, 243, 256, 512, 648, 729, 1024, 1296, 1944, 2048, 2187, 2592, 3888, 4096, 5184, 5832, 6561, 7776, 8192, 10368, 11664, 15552, 15625, 16384, 17496, 19683, 20736, 23328, 31104, 32768, 34992, 41472, 46656
Offset: 1
Examples
8 appears in the list because 8 = 2^3 and 2<3. Construction of elements up to 1000: 1. Put 2^3 and 3^5 in a list; {8, 81} (The terms of A104126 up to 1000.) 2. For each element, put products the last list with their distinct prime factors up to 1000. Gives: {8, 16, 32, 64, 128, 256, 512, 81, 243, 729} (Terms from A192135 up to 1000). 3. Put products of k powers of distinct primes in a new list up to 1000: {648} (k>1). Unite {648} with {8, 16, 32, 64, 128, 256, 512, 81, 243, 729}. {8, 16, 32, 64, 128, 256, 512, 81, 243, 729, 648}. Sort the list. This gives: {8, 16, 32, 64, 81, 128, 243, 256, 512, 648, 729}, which are the elements below 1000 in this sequence. - _David A. Corneth_, Jun 07 2016
Links
- Robert Israel, Table of n, a(n) for n = 1..10001
Crossrefs
Programs
-
Maple
N:= 10^10: # to get all terms <= N p:= 1: S:= {1}: do p:= nextprime(p); if p^(p+1) > N then break fi; pp:= [seq(p^j, j=p+1 .. ilog[p](N))]; S:= S union select(`<=`,{seq(seq(s*q,s=S),q=pp)},N); od: sort(convert(S,list)); # Robert Israel, Jun 07 2016
-
Mathematica
okQ[n_] := AllTrue[FactorInteger[n], #[[1]] < #[[2]]&]; Join[{1}, Select[Range[50000], okQ]] (* Jean-François Alcover, Jun 08 2016 *)
-
PARI
lista(nn) = {for (n=1, nn, f = factor(n); ok = 1; for (i=1, #f~, if (f[i, 1] >= f[i, 2], ok = 0; break;);); if (ok, print1(n, ", ")););} \\ Michel Marcus, Jun 15 2013
Formula
Sum_{n>=1} 1/a(n) = Product_{p prime} 1 + 1/((p-1)*p^p) = 1.27325025767774256043... - Amiram Eldar, Nov 24 2020
Extensions
1 prepended by Alec Jones, Jun 07 2016
Comments