A054765 a(n+2) = (2n+3)*a(n+1) + (n+1)^2*a(n), a(0) = 0, a(1) = 1.
0, 1, 3, 19, 160, 1744, 23184, 364176, 6598656, 135484416, 3108695040, 78831037440, 2189265960960, 66083318415360, 2154235544616960, 75425161203302400, 2822882994841190400, 112463980097804697600
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..390
- K. S. Brown, Integer Sequences Related To Pi
Programs
-
Maple
A054765 := proc(n) option remember; if n <= 1 then n; else (2*n-1)*procname(n-1)+(n-1)^2*procname(n-2) ; end if; end proc: # R. J. Mathar, Jul 13 2013
-
Mathematica
RecurrenceTable[{a[n + 2] == (2*n + 3)*a[n + 1] + (n + 1)^2*a[n], a[0] == 0, a[1] == 1}, a, {n,0,50}] (* G. C. Greubel, Feb 18 2017 *)
Formula
a(n) ~ Pi * (1+sqrt(2))^(n + 1/2) * n^n / (2^(9/4) * exp(n)). - Vaclav Kotesovec, Feb 18 2017
Extensions
More terms from James Sellers, May 27 2000
Comments