cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054767 Period of the sequence of Bell numbers A000110 (mod n).

Original entry on oeis.org

1, 3, 13, 12, 781, 39, 137257, 24, 39, 2343, 28531167061, 156, 25239592216021, 411771, 10153, 48, 51702516367896047761, 39, 109912203092239643840221, 9372, 1784341, 85593501183, 949112181811268728834319677753, 312, 3905, 75718776648063, 117, 1647084
Offset: 1

Views

Author

Eric W. Weisstein, Feb 09 2002

Keywords

Comments

For p prime, a(p) divides (p^p-1)/(p-1) = A023037(p), with equality at least for p up to 19.
Wagstaff shows that N(p) = (p^p-1)/(p-1) is the period for all primes p < 102 and for primes p = 113, 163, 167 and 173. For p = 7547, N(p) is a probable prime, which means that this p may have the maximum possible period N(p) also. See A088790. - T. D. Noe, Dec 17 2008

Crossrefs

Cf. A000110, A023037, A214810. A146093-A146122 gives Bell numbers read mod 3 to mod 32.

Programs

  • Mathematica
    (* Warning: this program is just a verification of the existing data
     and should not be used to extend the sequence beyond a(28) *)
    BellMod[k_, m_] := Mod[Sum[Mod[StirlingS2[k, j], m], {j, 1, k}], m];
    BellMod[k_, 1] := BellB[k];
    period[nn_List] := Module[{lgmin=2, lgmax=5, nn1},
       lg=If[Length[nn]<=lgmax, lgmin, lgmax];
       nn1 = nn[[1;;lg]];
       km=Length[nn]-lg;
       Catch[Do[If[nn1==nn[[k;;k+lg-1]], Throw[k-1]];
       If[k==km, Throw[0]], {k, 2, km}]]];
    dd[n_] := SelectFirst[Table[{d, n/d},
         {d, Divisors[n][[2;;-2]]}], GCD@@#==1&];
    a[1]=1;
    a[p_?PrimeQ] := a[p] = (p^p-1)/(p-1);
    a[n_/;n>4 && dd[n]!={}] := With[{g = dd[n]}, LCM[a[g[[1]]], a[g[[2]]]]];
    a[n_/;MemberQ[FactorInteger[n][[All, 2]], 1]] := a[n]=
       With[{pp = Select[FactorInteger[n], #1[[2]] ==1 &][[All, 1]]},
          a[n/Times@@pp]*Times@@a/@pp];
    a[n_/;n>4 && GCD @@ FactorInteger[n][[All, 2]]>1] := a[n]=
       With[{g=GCD @@ FactorInteger[n][[All, 2]]}, n^(1/g)*a[n^(1-1/g)]];
    a[n_] := period[Table[BellMod[k, n], {k, 1, 28}]];
    Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Jul 31 2012, updated May 06 2024 *)

Formula

If gcd(n,m) = 1, a(n*m) = lcm(a(n), a(m)). But the sequence is not in general multiplicative; e.g. a(2) = 3, a(9) = 39 and a(18) = 39. - Franklin T. Adams-Watters, Jun 06 2006
a(2^s) = 3*2^s for s >= 2 (Theorem 6.4 in the Lunnon article). For an odd prime p, if a(p) = (p^p-1)/(p-1) (which is conjectured to hold for all p), then a(p^s) = p^(s-1)*(p^p-1)/(p-1) (Theorem 6.2 in the Lunnon article). - Jianing Song, Jun 18 2025

Extensions

More information from Phil Carmody, Dec 22 2002
Extended by T. D. Noe, Dec 18 2008
a(26) corrected by Jean-François Alcover, Jul 31 2012
a(18) corrected by Charles R Greathouse IV, Jul 31 2012
a(27)-a(28) from Charles R Greathouse IV, Sep 07 2016