A054770 Numbers that are not the sum of distinct Lucas numbers 1,3,4,7,11, ... (A000204).
2, 6, 9, 13, 17, 20, 24, 27, 31, 35, 38, 42, 46, 49, 53, 56, 60, 64, 67, 71, 74, 78, 82, 85, 89, 93, 96, 100, 103, 107, 111, 114, 118, 122, 125, 129, 132, 136, 140, 143, 147, 150, 154, 158, 161, 165, 169, 172, 176, 179, 183, 187, 190, 194, 197, 201, 205, 208, 212
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- L. Carlitz, R. Scoville, and V. E. Hoggatt, Jr., Lucas representations, Fibonacci Quart. 10 (1972), 29-42, 70, 112.
- Weiru Chen and Jared Krandel, Interpolating Classical Partitions of the Set of Positive Integers, arXiv:1810.11938 [math.NT], 2018. See sequence D2 p. 4.
- Michel Dekking, Base phi representations and golden mean beta-expansions, arXiv:1906.08437 [math.NT], 2019.
- Jared Krandel and Weiru Chen, Interpolating classical partitions of the set of positive integers, The Ramanujan Journal (2020).
Programs
-
Magma
[Floor(n*(Sqrt(5)+5)/2)-1: n in [1..60]]; // Vincenzo Librandi, Oct 30 2018
-
Maple
A054770 := n -> floor(n*(sqrt(5)+5)/2)-1;
-
Mathematica
Complement[Range[220],Total/@Subsets[LucasL[Range[25]],5]] (* Harvey P. Dale, Feb 27 2012 *) Table[Floor[n (Sqrt[5] + 5) / 2] - 1, {n, 60}] (* Vincenzo Librandi, Oct 30 2018 *)
-
PARI
a(n)=floor(n*(sqrt(5)+5)/2)-1
-
Python
from math import isqrt def A054770(n): return (n+isqrt(5*n**2)>>1)+(n<<1)-1 # Chai Wah Wu, Aug 17 2022
Formula
a(n) = floor(((5+sqrt(5))/2)*n)-1 (conjectured by David W. Wilson; proved by Ian Agol (iagol(AT)math.ucdavis.edu), Jun 08 2000)
a(n) = A000201(n) + 2*n - 1. - Michel Dekking, Sep 07 2017
G.f.: x*(x+1)/(1-x)^2 + Sum_{i>=1} (floor(i*phi)*x^i), where phi = (1 + sqrt(5))/2. - Iain Fox, Dec 19 2017
Ian Agol tells me that David W. Wilson's formula is proved in the Carlitz, Scoville, Hoggatt paper 'Lucas representations'. See Equation (1.12), and use A(A(n))+n = B(n)+n-1 = A(n)+2*n-1, the well known formulas for the lower Wythoff sequence A = A000201, and the upper Wythoff sequence B = A001950. - Michel Dekking, Jan 04 2018
Extensions
More terms from James Sellers, May 28 2000
Comments