A054783 (n^2)-th Fibonacci number.
0, 1, 3, 34, 987, 75025, 14930352, 7778742049, 10610209857723, 37889062373143906, 354224848179261915075, 8670007398507948658051921, 555565404224292694404015791808, 93202207781383214849429075266681969, 40934782466626840596168752972961528246147
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..69
- Jakub Byszewski, Grzegorz Graff and Thomas Ward, Dold sequences, periodic points, and dynamics, arXiv:2007.04031 [math.DS], 2020-2021; Bull. Lond. Math. Soc. 53 (2021), no. 5, 1263-1298.
- T. Kotek and J. A. Makowsky, Recurrence Relations for Graph Polynomials on Bi-iterative Families of Graphs, arXiv preprint arXiv:1309.4020 [math.CO], 2013.
- Florian Luca and Tom Ward, On (almost) realizable subsequences of linearly recurrent sequences, arXiv:2204.02711 [math.NT], 2022.
- Piotr Miska and Tom Ward, Stirling numbers and periodic points, arXiv:2102.07561 [math.NT], 2021; Acta Arith. 201 (2021), no. 4, 421-435.
- Patrick Moss and Tom Ward, Fibonacci along even powers is (almost) realizable, arXiv:2011.13068 [math.NT], 2020; Fibonacci Quart. 60 (2022), no. 1, 40-47.
Crossrefs
Programs
-
Magma
[Fibonacci(n^2): n in [0..50]]; // Vincenzo Librandi, Apr 09 2011
-
Maple
a:= n-> (<<0|1>, <1|1>>^(n^2))[1, 2]: seq(a(n), n=0..15); # Alois P. Heinz, Jun 10 2018
-
Mathematica
Table[Fibonacci[n^2], {n, 15}] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
-
PARI
a(n)=fibonacci(n^2) \\ Charles R Greathouse IV, Oct 07 2016
Formula
a(n) = Sum_{k=1..T(n-1)+1} binomial(T(n-1), k-1)*F(n-1+k), where F(n) is A000045 and T(n) is A000217. - Tony Foster III, Sep 03 2018
Comments