A054785 a(n) = sigma(2n) - sigma(n), where sigma is the sum of divisors of n, A000203.
2, 4, 8, 8, 12, 16, 16, 16, 26, 24, 24, 32, 28, 32, 48, 32, 36, 52, 40, 48, 64, 48, 48, 64, 62, 56, 80, 64, 60, 96, 64, 64, 96, 72, 96, 104, 76, 80, 112, 96, 84, 128, 88, 96, 156, 96, 96, 128, 114, 124, 144, 112, 108, 160, 144, 128, 160, 120, 120, 192, 124, 128, 208
Offset: 1
Examples
n=9: sigma(18)=18+9+6+3+2+1=39, sigma(9)=9+3+1=13, a(9)=39-13=26.
Links
- Paul Tek, Table of n, a(n) for n = 1..10000
- Octavio A. AgustÃn-Aquino, Wang-Sun formula in GL(Z/2kZ), Integers, Vol. 23 (2023), #A37.
Programs
-
Magma
[DivisorSigma(1, 2*n) - DivisorSigma(1, n): n in [1..70]]; Vincenzo Librandi, Oct 05 2018
-
Maple
a:= proc(n) local e; e:= 2^padic:-ordp(n,2); 2*e*numtheory:-sigma(n/e) end proc: map(a, [$1..100]); # Robert Israel, Jul 05 2016
-
Mathematica
Table[DivisorSigma[1,2n]-DivisorSigma[1,n],{n,70}] (* Harvey P. Dale, May 11 2014 *) Table[CoefficientList[Series[-Log[EllipticTheta[4, 0, x]], {x, 0, 80}],x][[n + 1]] n, {n, 1, 80}] (* Benedict W. J. Irwin, Jul 05 2016 *)
-
PARI
a(n)=sigma(2*n)-sigma(n) \\ Charles R Greathouse IV, Feb 13 2013
Formula
a(n) = 2*A002131(n).
L.g.f.: -log(EllipticTheta(4,0,x)) = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016
G.f.: Sum_{k>=1} 2*k*x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Oct 23 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/8 = 1.2337005... (A111003). - Amiram Eldar, Jan 19 2024
Comments