cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054785 a(n) = sigma(2n) - sigma(n), where sigma is the sum of divisors of n, A000203.

Original entry on oeis.org

2, 4, 8, 8, 12, 16, 16, 16, 26, 24, 24, 32, 28, 32, 48, 32, 36, 52, 40, 48, 64, 48, 48, 64, 62, 56, 80, 64, 60, 96, 64, 64, 96, 72, 96, 104, 76, 80, 112, 96, 84, 128, 88, 96, 156, 96, 96, 128, 114, 124, 144, 112, 108, 160, 144, 128, 160, 120, 120, 192, 124, 128, 208
Offset: 1

Views

Author

Labos Elemer, May 22 2000

Keywords

Comments

Sum of divisors of 2*n that do not divide n. - Franklin T. Adams-Watters, Oct 04 2018
a(n) = 2*n iff n = 2^k, k >= 0 (A000079). - Bernard Schott, Mar 24 2020

Examples

			n=9: sigma(18)=18+9+6+3+2+1=39, sigma(9)=9+3+1=13, a(9)=39-13=26.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(1, 2*n) - DivisorSigma(1, n): n in [1..70]]; Vincenzo Librandi, Oct 05 2018
  • Maple
    a:= proc(n) local e;
      e:= 2^padic:-ordp(n,2);
      2*e*numtheory:-sigma(n/e)
    end proc:
    map(a, [$1..100]); # Robert Israel, Jul 05 2016
  • Mathematica
    Table[DivisorSigma[1,2n]-DivisorSigma[1,n],{n,70}] (* Harvey P. Dale, May 11 2014 *)
    Table[CoefficientList[Series[-Log[EllipticTheta[4, 0, x]], {x, 0, 80}],x][[n + 1]] n, {n, 1, 80}] (* Benedict W. J. Irwin, Jul 05 2016 *)
  • PARI
    a(n)=sigma(2*n)-sigma(n) \\ Charles R Greathouse IV, Feb 13 2013
    

Formula

a(n) = A000203(2n) - A000203(n).
a(n) = 2*A002131(n).
a(2*n) = A000203(n) + A000593(2*n). - Reinhard Zumkeller, Apr 23 2008
L.g.f.: -log(EllipticTheta(4,0,x)) = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016
G.f.: Sum_{k>=1} 2*k*x^k/(1 - x^(2*k)). - Ilya Gutkovskiy, Oct 23 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/8 = 1.2337005... (A111003). - Amiram Eldar, Jan 19 2024