cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054849 a(n) = 2^(n-5)*binomial(n,5). Number of 5D hypercubes in an n-dimensional hypercube.

Original entry on oeis.org

1, 12, 84, 448, 2016, 8064, 29568, 101376, 329472, 1025024, 3075072, 8945664, 25346048, 70189056, 190513152, 508035072, 1333592064, 3451650048, 8820883456, 22284337152, 55710842880, 137950658560, 338606161920
Offset: 5

Views

Author

Henry Bottomley, Apr 14 2000

Keywords

Comments

With 5 leading zeros, binomial transform of binomial(n,5). - Paul Barry, Apr 10 2003
If X_1,X_2,...,X_n is a partition of a 2n-set X into 2-blocks then, for n>4, a(n) is equal to the number of (n+5)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007

Crossrefs

a(n) = A038207(n,5).
Equals 2 * A082139. First differences are in A006975.

Programs

  • GAP
    List([5..30], n-> 2^(n-5)*Binomial(n,5)); # G. C. Greubel, Aug 27 2019
  • Magma
    [2^(n-5)*Binomial(n,5): n in [5..30]]; // G. C. Greubel, Aug 27 2019
    
  • Maple
    seq(binomial(n+5,5)*2^n,n=0..22); # Zerinvary Lajos, Jun 13 2008
  • Mathematica
    Table[2^(n-5)*Binomial[n,5], {n,5,30}] (* G. C. Greubel, Aug 27 2019 *)
  • PARI
    vector(25, n, 2^(n-1)*binomial(n+4,5)) \\ G. C. Greubel, Aug 27 2019
    
  • Sage
    [lucas_number2(n, 2, 0)*binomial(n,5)/32 for n in range(5, 28)] # Zerinvary Lajos, Mar 10 2009
    

Formula

a(n) = 2*a(n-1) + A003472(n-1).
From Paul Barry, Apr 10 2003: (Start)
O.g.f.: x^5/(1-2*x)^6.
E.g.f.: exp(2*x)*(x^5/5!) (with 5 leading zeros). (End)
a(n) = Sum_{i=5..n} binomial(i,5)*binomial(n,i). Example: for n=8, a(8) = 1*56 + 6*28 + 21*8 + 56*1 = 448. - Bruno Berselli, Mar 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=5} 1/a(n) = 10*log(2) - 35/6.
Sum_{n>=5} (-1)^(n+1)/a(n) = 810*log(3/2) - 655/2. (End)

Extensions

More terms from James Sellers, Apr 15 2000