cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054851 a(n) = 2^(n-7)*binomial(n,7). Number of 7D hypercubes in an n-dimensional hypercube.

Original entry on oeis.org

1, 16, 144, 960, 5280, 25344, 109824, 439296, 1647360, 5857280, 19914752, 65175552, 206389248, 635043840, 1905131520, 5588385792, 16066609152, 45364543488, 126012620800, 344876646400, 931166945280, 2483111854080
Offset: 7

Views

Author

Henry Bottomley, Apr 14 2000

Keywords

Comments

If X_1,X_2,...,X_n is a partition of a 2n-set X into 2-blocks then, for n>6, a(n) is equal to the number of (n+7)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007

Crossrefs

Programs

  • GAP
    List([7..30], n-> 2^(n-7)*Binomial(n,7)); # G. C. Greubel, Aug 27 2019
  • Magma
    [2^(n-7)*Binomial(n,7): n in [7..30]]; // G. C. Greubel, Aug 27 2019
    
  • Maple
    seq(binomial(n+7,7)*2^n,n=0..21); # Zerinvary Lajos, Jun 23 2008
  • Mathematica
    Table[2^(n-7)*Binomial[n,7], {n,7,30}] (* G. C. Greubel, Aug 27 2019 *)
  • PARI
    vector(23, n, 2^(n-1)*binomial(n+6, 7)) \\ G. C. Greubel, Aug 27 2019
    

Formula

a(n) = 2*a(n-1) + A002409(n-1).
a(n+8) = A082141(n+1)/2.
G.f.: x^7/(1-2*x)^8. - Colin Barker, Sep 04 2012
a(n) = Sum_{i=7..n} binomial(i,7)*binomial(n,i). Example: for n=11, a(11) = 1*330 + 8*165 + 36*55 + 120*11 + 330*1 = 5280. - Bruno Berselli, Mar 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=7} 1/a(n) = 14*log(2) - 259/30.
Sum_{n>=7} (-1)^(n+1)/a(n) = 10206*log(3/2) - 124117/30. (End)

Extensions

More terms from James Sellers, Apr 15 2000