A054851 a(n) = 2^(n-7)*binomial(n,7). Number of 7D hypercubes in an n-dimensional hypercube.
1, 16, 144, 960, 5280, 25344, 109824, 439296, 1647360, 5857280, 19914752, 65175552, 206389248, 635043840, 1905131520, 5588385792, 16066609152, 45364543488, 126012620800, 344876646400, 931166945280, 2483111854080
Offset: 7
Links
- G. C. Greubel, Table of n, a(n) for n = 7..1000
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
- Index entries for linear recurrences with constant coefficients, signature (16,-112,448,-1120,1792,-1792, 1024,-256).
Programs
-
GAP
List([7..30], n-> 2^(n-7)*Binomial(n,7)); # G. C. Greubel, Aug 27 2019
-
Magma
[2^(n-7)*Binomial(n,7): n in [7..30]]; // G. C. Greubel, Aug 27 2019
-
Maple
seq(binomial(n+7,7)*2^n,n=0..21); # Zerinvary Lajos, Jun 23 2008
-
Mathematica
Table[2^(n-7)*Binomial[n,7], {n,7,30}] (* G. C. Greubel, Aug 27 2019 *)
-
PARI
vector(23, n, 2^(n-1)*binomial(n+6, 7)) \\ G. C. Greubel, Aug 27 2019
Formula
a(n) = 2*a(n-1) + A002409(n-1).
a(n+8) = A082141(n+1)/2.
G.f.: x^7/(1-2*x)^8. - Colin Barker, Sep 04 2012
a(n) = Sum_{i=7..n} binomial(i,7)*binomial(n,i). Example: for n=11, a(11) = 1*330 + 8*165 + 36*55 + 120*11 + 330*1 = 5280. - Bruno Berselli, Mar 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=7} 1/a(n) = 14*log(2) - 259/30.
Sum_{n>=7} (-1)^(n+1)/a(n) = 10206*log(3/2) - 124117/30. (End)
Extensions
More terms from James Sellers, Apr 15 2000
Comments