A054886 Layer counting sequence for hyperbolic tessellation by cuspidal triangles of angles (Pi/3,Pi/3,0) (this is the classical modular tessellation).
1, 3, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338, 126491972
Offset: 0
References
- P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 156.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..999 [Offset changed to 0 by _Georg Fischer_, Mar 01 2022]
- J. W. Cannon and P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
- Index entries for Coordination Sequences [A layer sequence is a kind of coordination sequence. - _N. J. A. Sloane_, Nov 20 2022]
- Index entries for sequences related to modular groups
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Coordination sequences for triangular tilings of hyperbolic space: A001630, A007283, A054886, A078042, A096231, A163876, A179070, A265057, A265058, A265059, A265060, A265061, A265062, A265063, A265064, A265065, A265066, A265067, A265068, A265069, A265070, A265071, A265072, A265073, A265074, A265075, A265076, A265077.
Essentially the same as A006355.
Programs
-
Mathematica
Join[{1,3},2Fibonacci[Range[4,40]]] (* Harvey P. Dale, Jan 06 2012 *)
-
PARI
my(x='x+O('x^50)); Vec((1+2*x+2*x^2+x^3)/(1-x-x^2)) \\ G. C. Greubel, Aug 06 2017
Formula
G.f.: (1+2*x+2*x^2+x^3)/(1-x-x^2) = (x^2+x+1)*(1+x)/(1-x-x^2).
a(n) = 2*F(n+2) for n >= 2, with F(n) the n-th Fibonacci number (cf. A000045).
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/5 - 1 - x. - Stefano Spezia, Apr 18 2022
Extensions
Offset changed to 0 by N. J. A. Sloane, Jan 03 2022 at the suggestion of Pontus von Brömssen
Comments