cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054914 Number of labeled connected digraphs with n nodes such that complement is also connected.

Original entry on oeis.org

1, 2, 44, 3572, 1005584, 1060875152, 4382913876704, 71987098738435232, 4721068803628864289024, 1237845578934919489219757312, 1298046978912816702510086132201984, 5444486716626952189940499391640815580672, 91343710775311761525117954724021374685703481344
Offset: 1

Views

Author

N. J. A. Sloane, May 23 2000

Keywords

Crossrefs

Programs

  • Magma
    m:=30;
    f:= func< x | (&+[2^(n*(n-1))*x^n/Factorial(n): n in [0..m+3]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( 1 + 2*Log(f(x)) - f(x) ))); // G. C. Greubel, Apr 28 2023
    
  • Maple
    b:= n-> 2^(n^2-n):
    g:= proc(n) option remember; local k; `if`(n=0, 1,
          b(n)- add(k*binomial(n,k) *b(n-k)*g(k), k=1..n-1)/n)
        end:
    a:= n-> 2*g(n)-b(n):
    seq (a(n), n=1..20);  # Alois P. Heinz, Oct 21 2012
  • Mathematica
    nn=20; g=Sum[2^(2Binomial[n,2])x^n/n!,{n,0,nn}];
    Drop[Range[0,nn]!CoefficientList[Series[2(Log[g]+1)-g,{x,0,nn}],x],1]  (* Geoffrey Critzer, Oct 21 2012 *)
  • SageMath
    m=30
    def f(x): return sum(2^(n*(n-1))*x^n/factorial(n) for n in range(m+4))
    def A054914_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( 2 + 2*log(f(x)) - f(x) ).egf_to_ogf().list()
    a=A054914_list(40); a[1:] # G. C. Greubel, Apr 28 2023

Formula

a(n) = 2*A003027(n) - A053763(n).

Extensions

More terms from Vladeta Jovovic, Jul 17 2000