A054914 Number of labeled connected digraphs with n nodes such that complement is also connected.
1, 2, 44, 3572, 1005584, 1060875152, 4382913876704, 71987098738435232, 4721068803628864289024, 1237845578934919489219757312, 1298046978912816702510086132201984, 5444486716626952189940499391640815580672, 91343710775311761525117954724021374685703481344
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..50
- V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
Programs
-
Magma
m:=30; f:= func< x | (&+[2^(n*(n-1))*x^n/Factorial(n): n in [0..m+3]]) >; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Laplace( 1 + 2*Log(f(x)) - f(x) ))); // G. C. Greubel, Apr 28 2023 -
Maple
b:= n-> 2^(n^2-n): g:= proc(n) option remember; local k; `if`(n=0, 1, b(n)- add(k*binomial(n,k) *b(n-k)*g(k), k=1..n-1)/n) end: a:= n-> 2*g(n)-b(n): seq (a(n), n=1..20); # Alois P. Heinz, Oct 21 2012
-
Mathematica
nn=20; g=Sum[2^(2Binomial[n,2])x^n/n!,{n,0,nn}]; Drop[Range[0,nn]!CoefficientList[Series[2(Log[g]+1)-g,{x,0,nn}],x],1] (* Geoffrey Critzer, Oct 21 2012 *)
-
SageMath
m=30 def f(x): return sum(2^(n*(n-1))*x^n/factorial(n) for n in range(m+4)) def A054914_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( 2 + 2*log(f(x)) - f(x) ).egf_to_ogf().list() a=A054914_list(40); a[1:] # G. C. Greubel, Apr 28 2023
Extensions
More terms from Vladeta Jovovic, Jul 17 2000