A054977 a(0)=2, a(n)=1 for n >= 1.
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Links
- Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
- Eric Weisstein's World of Mathematics, Harmonic Expansion
- Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, Integer sequences from k-iterated line digraphs, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
- Index entries for linear recurrences with constant coefficients, signature (1).
Programs
-
Haskell
a054977 0 = 2; a054977 n = 1 a054977_list = 2 : repeat 1 -- Reinhard Zumkeller, May 07 2012
-
Magma
ContinuedFraction((1+Sqrt(5))^2/4); // G. C. Greubel, Nov 26 2018
-
Mathematica
A054977[1]:=2; A054977[n_]:=1; (* Enrique Pérez Herrero, May 16 2010 *) PadRight[{2},120,{1}] (* Harvey P. Dale, Mar 30 2018 *)
-
PARI
a(n)=if(n,1,2) \\ Charles R Greathouse IV, Mar 23 2016
-
PARI
contfrac((sqrt(5)+3)/2)[^-1] \\ or A068446_vec(30,exp(1)) illustrate that this is the c.f. resp. factoriadic expansion of these two constants. - M. F. Hasler, Nov 28 2018
-
Python
def A054977(n): return 1 if n else 2 # Chai Wah Wu, Dec 20 2018
-
Sage
continued_fraction(golden_ratio^2) # G. C. Greubel, Nov 26 2018
Formula
a(n) = A027642(2*n+1). - Enrique Pérez Herrero, Jul 17 2010
G.f.: (2-x)/(1-x). - Wolfdieter Lang, Oct 05 2014
Sum_{k>=1} a(n)/n! = exp(1). - G. C. Greubel, Nov 26 2018
Comments