cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A055018 Numbers n such that n and n+1 are modest (cf. A054986).

Original entry on oeis.org

411, 811, 1421, 2036, 2044, 2054, 3054, 4036, 4044, 4054, 8036, 12036, 16036, 20036, 24036, 28036, 32036, 40011, 40044, 50054, 50074, 80011, 88296, 100110, 100270, 100369, 120296, 120404, 140021, 144242, 176296, 200044, 200270, 200369
Offset: 1

Views

Author

Hans Havermann, May 31 2000

Keywords

Examples

			2036 is modest because Mod[2036, 36] = 20. 2037 is modest because Mod[2037, 037] = 2. Hence 2036 is this pair's modest twin representative.
		

Programs

  • Haskell
    import Data.List (elemIndices)
    a055018 n = a055018_list !! (n-1)
    a055018_list = map (a054986 . (+ 1)) $ elemIndices 1 $
                   zipWith (-) (tail a054986_list) a054986_list
    -- Reinhard Zumkeller, Mar 26 2012

A007627 Primitive modest numbers.

Original entry on oeis.org

13, 19, 23, 29, 49, 59, 79, 89, 103, 109, 111, 133, 199, 203, 209, 211, 233, 299, 311, 409, 411, 433, 499, 509, 511, 533, 599, 611, 709, 711, 733, 799, 809, 811, 833, 899, 911, 1003, 1009, 1011, 1027, 1033, 1037, 1099, 1111
Offset: 1

Views

Author

Keywords

Comments

Modest numbers (A054986) are the same but without assuming (a,b) = 1.
For given k, (see FORMULA section) b's are divisors of (10^k - 1), and a's are coprime with b, number of pairs (a,b) is Sum_{i=1..m} phi(b_i) - 1 where b_i are divisors of (10^k - 1),
m = d(10^k - 1) the number of divisors of n (A000005),
and phi is Euler totient function (A000010).
E.g., for k = 1: b = 1, 3, 9, and pairs of (a,b) are:
(1,3), (2,3), (1,9), (2,9), (4,9), (5,9), (7,9), and (8,9) - a total of 8 pairs. - Zak Seidov, Mar 22 2012

References

  • Problem 1291, J. Rec. Math., 17 (No.2, 1984), 140-141.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (inits, tails)
    a007627 n = a007627_list !! (n-1)
    a007627_list = filter modest' [1..] where
       modest' x = or $ zipWith m
                   (map read $ (init $ tail $ inits $ show x) :: [Integer])
                   (map read $ (tail $ init $ tails $ show x) :: [Integer])
          where m u v = u < v && (x - u) `mod` v == 0 && gcd u v == 1
    -- Reinhard Zumkeller, Mar 27 2011

Formula

n = a*10^k + b such that (a, b)=1, n == a (mod b), a < b < 10^k.

A210582 Numbers whose first digit is the remainder of their division by the last digit (in base 10).

Original entry on oeis.org

13, 19, 23, 26, 29, 39, 46, 49, 59, 69, 79, 89, 103, 109, 127, 133, 163, 193, 197, 199, 203, 206, 209, 214, 218, 233, 234, 236, 247, 254, 258, 263, 266, 274, 293, 294, 296, 298, 299, 309, 367, 399, 406, 409, 417, 428, 436, 466, 468, 487, 496, 499, 509, 537, 599, 609, 638, 657, 678, 699, 709, 799, 809, 899
Offset: 1

Views

Author

Eric Angelini and M. F. Hasler, Mar 22 2012

Keywords

Comments

This is a restricted or simplified version of the definition of modest numbers A054986.

Crossrefs

A subsequence of A067251, disjoint with A034709.

Programs

  • Haskell
    a210582 n = a210582_list !! (n-1)
    a210582_list = filter (\x -> mod x (a010879 x) == a000030 x) a067251_list
    -- Reinhard Zumkeller, Mar 26 2012
    
  • Magma
    [ n: n in [1..1002] | not IsZero(d[1]) and n mod d[1] eq d[#d] where d is Intseq(n) ];  // Bruno Berselli, Mar 26 2012
  • PARI
    is_nm( x )=x%10 && x%(x%10)==x\10^(#Str(x)-1)
    for(n=1,999,is_nm(n)&print1(n","))
    

Formula

a(n) mod A010879(a(n)) = A000030(a(n)). [Reinhard Zumkeller, Mar 26 2011]

Extensions

Edited by M. F. Hasler, Jan 14 2014
Showing 1-3 of 3 results.