cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A054996 Integers that can be expressed as the sum of consecutive primes in exactly 1 way.

Original entry on oeis.org

2, 3, 7, 8, 10, 11, 12, 13, 15, 18, 19, 24, 26, 28, 29, 30, 37, 39, 42, 43, 47, 48, 49, 52, 56, 58, 61, 68, 73, 75, 77, 78, 79, 84, 88, 89, 95, 98, 102, 103, 107, 113, 121, 124, 128, 129, 132, 137, 144, 149, 150, 151, 155, 156, 157, 158, 159, 160, 161, 162, 163
Offset: 1

Views

Author

Jud McCranie, May 30 2000

Keywords

Examples

			8=3+5, so 8 is in the sequence.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, section C2.

Crossrefs

Formula

A054845(a(n)) = 1. - Ray Chandler, Sep 20 2023

A055001 Integers that can be expressed as the sum of consecutive primes in exactly 6 ways.

Original entry on oeis.org

34421, 130638, 229841, 235493, 271919, 295504, 345011, 347856, 358446, 358877, 414221, 429804, 434669, 480951, 488603, 532423, 532823, 543625, 561375, 621937, 626852, 655561, 687496, 703087, 734069, 746829, 810418, 824099, 888793
Offset: 1

Views

Author

Jud McCranie, May 30 2000

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, section C2.

Crossrefs

Formula

A054845(a(n)) = 6. - Ray Chandler, Sep 20 2023

A067375 Integers expressible as the sum of (at least two) consecutive primes in at least 5 ways.

Original entry on oeis.org

16277, 20272, 25416, 28500, 34421, 41074, 45101, 46660, 50560, 53424, 59068, 68787, 70104, 70692, 71548, 78756, 85433, 85481, 88453, 94350, 98881, 105827, 117907, 120151, 121847, 125952, 130638, 130789, 131420, 132539, 133367, 134376, 135918, 139853, 158810
Offset: 1

Views

Author

Patrick De Geest, Feb 04 2002

Keywords

Examples

			E.g. 16277 = (#7,2297) (#11,1451) (#13,1213) (#35,359) (#37,331).
		

Crossrefs

Programs

  • Mathematica
    t={};Do[p=Prime[m];Do[p=p+Prime[n];If[p<200000,AppendTo[t,p]],{n,m+1,7001}],{m,1,7000}];t=Sort@t;f5[l_]:=Module[{t={}},Do[If[l[[n]]==l[[n+4]],AppendTo[t,l[[n]]]],{n,Length[l]-4}];t];Union@f5[t] (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)

Formula

A084143(a(n)) > 4. - Ray Chandler, Sep 20 2023

Extensions

Offset and a(35) corrected by Donovan Johnson, Nov 14 2013
Showing 1-3 of 3 results.