A055012 Sum of cubes of the digits of n written in base 10.
0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1, 2, 9, 28, 65, 126, 217, 344, 513, 730, 8, 9, 16, 35, 72, 133, 224, 351, 520, 737, 27, 28, 35, 54, 91, 152, 243, 370, 539, 756, 64, 65, 72, 91, 128, 189, 280, 407, 576, 793, 125, 126, 133, 152, 189, 250, 341, 468, 637, 854
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..11000
- K. Iséki, A problem of number theory, Proc. Japan Academy 36 (1960), 578-583.
- B. M. Stewart, Sums of functions of digits, Canad. J. Math., 12 (1960), 374-389.
- Index entries for Colombian or self numbers and related sequences
Crossrefs
Cf. A046197 Fixed points; A046459: integers equal to the sum of the digits of their cubes; A072884: 3rd-order digital invariants: the sum of the cubes of the digits of n equals some number k and the sum of the cubes of the digits of k equals n; A164883: cubes with the property that the sum of the cubes of the digits is also a cube.
Programs
-
Magma
[0] cat [&+[d^3: d in Intseq(n)]: n in [1..60]]; // Bruno Berselli, Feb 01 2013
-
Maple
A055012 := proc(n) add(d^3,d=convert(n,base,10)) ; end proc: # R. J. Mathar, Dec 15 2011
-
Mathematica
Total/@((IntegerDigits/@Range[0,60])^3) (* Harvey P. Dale, Jan 27 2012 *) Table[Sum[DigitCount[n][[i]] i^3, {i, 9}], {n, 0, 60}] (* Bruno Berselli, Feb 01 2013 *)
-
PARI
A055012(n)=sum(i=1,#n=digits(n),n[i]^3) \\ Charles R Greathouse IV, Jul 01 2013
-
Python
def a(n): return sum(map(lambda x: x*x*x, map(int, str(n)))) print([a(n) for n in range(60)]) # Michael S. Branicky, Jul 13 2022
Formula
a(n) = Sum_{k>=1} (floor(n/10^k) - 10*floor(n/10^(k+1)))^3. - Hieronymus Fischer, Jun 25 2007
a(10n+k) = a(n) + k^3, 0 <= k < 10. - Hieronymus Fischer, Jun 25 2007
From Reinhard Zumkeller, Sep 17 2009: (Start)
a(n) <= 729*A055642(n);
G.f. g(x) = Sum_{k>=0} (1-x^(10^k))*(x^(10^k)+8*x^(2*10^k)+27*x^(3*10^k)+64*x^(4*10^k)+125*x^(5*10^k)+216*x^(6*10^k)+343*x^(7*10^k)+512*x^(8*10^k)+729*x^(9*10^k))/((1-x)*(1-x^(10^(k+1))))
satisfies
g(x) = (x+8*x^2+27*x^3+64*x^4+125*x^5+216*x^6+343*x^7+512*x^8+729*x^9)/(1-x^10) + (1-x^10)*g(x^10)/(1-x). - Robert Israel, Jan 26 2017
Extensions
Edited by M. F. Hasler, Apr 12 2015
Iséki and Stewart links added by Don Knuth, Sep 07 2015
Comments