cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055217 a(n) = sum of the first n coefficients of (1+x+x^2)^n.

Original entry on oeis.org

1, 3, 10, 31, 96, 294, 897, 2727, 8272, 25048, 75747, 228826, 690691, 2083371, 6280650, 18925047, 57002616, 171633840, 516632307, 1554702516, 4677501237, 14069962041, 42314975352, 127240600050, 382555886571, 1150026301089
Offset: 0

Views

Author

Clark Kimberling, May 07 2000

Keywords

Crossrefs

T(2n+1, n), array T as in A055216.

Programs

  • Haskell
    a055217 n = sum $ take (n + 1) $ a027907_row (n + 1)
    -- Reinhard Zumkeller, Jan 22 2013
    
  • Maple
    a := n -> simplify((3^(n+1) - GegenbauerC(n+1,-n-1,-1/2))/2):
    seq(a(n), n=0..25); # Peter Luschny, May 12 2016
  • Mathematica
    Total/@Table[Take[CoefficientList[Expand[(1+x+x^2)^n],x],n],{n,30}] (* Harvey P. Dale, Aug 14 2011 *)
  • Maxima
    a(n):=sum(sum(binomial(n,j)*binomial(j,2*j-n-k),j,ceiling((n+k)/2),n),k,1,n); /* Vladimir Kruchinin, Aug 11 2010 */
    
  • PARI
    a(n) = my(v=Vec((1+'x+'x^2)^n)); sum(k=1, n, v[k]);

Formula

From Paul Barry, Jan 20 2008: (Start)
Binomial transform of A117186.
G.f.: (1+x-sqrt(1-2x-3x^2))/(2x*(1-2x-3x^2)).
a(n) = (3^(n+1) + A002426(n+1))/2. (End)
From Vladimir Kruchinin, Aug 11 2010: (Start)
Logarithm g.f.: log(1/(1-x*M(x))) = Sum_{n>0} a(n-1)/n*x^n, M(x) - o.g.f Motzkin numbers (A001006).
a(n) = sum(sum(binomial(n,j)*binomial(j,2*j-n-k),j,ceiling((n+k)/2),n),k,1,n), n>0. (End)
Conjecture: (n+1)*a(n) -(5*n+1)*a(n-1) +3*(n-1)*a(n-2) +9*(n-1)*a(n-3)=0. - R. J. Mathar, Nov 14 2011
a(n) = 3^n * 3/2 + O(3^n/sqrt(n)). - Charles R Greathouse IV, Dec 02 2015
From Peter Luschny, May 12 2016: (Start)
a(n) = (3^(n+1) - hypergeom([-(n+1)/2, -n/2], [1], 4))/2.
a(n) = (3^(n+1) - GegenbauerC(n+1,-n-1,-1/2))/2. (End)

Extensions

New description from Paul D. Hanna, Oct 09 2003