cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A055773 a(n) = Product_{p in P_n} where P_n = {p prime, n/2 < p <= n }.

Original entry on oeis.org

1, 1, 2, 6, 3, 15, 5, 35, 35, 35, 7, 77, 77, 1001, 143, 143, 143, 2431, 2431, 46189, 46189, 46189, 4199, 96577, 96577, 96577, 7429, 7429, 7429, 215441, 215441, 6678671, 6678671, 6678671, 392863, 392863, 392863, 14535931, 765049, 765049, 765049
Offset: 0

Views

Author

Labos Elemer, Jul 12 2000

Keywords

Comments

Old name: Product of primes p for which p divides n! but p^2 does not (i.e. ord_p(n!)=1). - Dion Gijswijt (gijswijt(AT)science.uva.nl), Jan 07 2007
Squarefree part of n! divided by gcd(Q,F), where Q is the largest square divisor and F is the squarefree part of n!. - Labos Elemer, Jul 12 2000
a(1) = 1, a(n) = n*a(n-1) if n is a prime else a(n) = least integer multiple of a(n-1)/n. - Amarnath Murthy, Apr 29 2004
Let P(i) denote the primorial number A034386(i). Then a(n) = P(n)/P(floor(n/2)). - Peter Luschny, Mar 05 2011
Letting H(n) = 1 + 1/2 + ... + 1/n denote the n-th harmonic number, it is known that a(n) is equal to the denominator (in lowest terms) of H(n)^2*n! for n >= 6 (see below example). - John M. Campbell, Mar 27 2016
For all n satisfying 6 <= n < 897, a(n) = A130087(n). - John M. Campbell, Mar 27 2016
It is also known that a(n) is equal to lcm^2(1, 2, ..., n)/gcd(lcm^2(1, 2, ..., n), n!). - John M. Campbell, Apr 04 2016

Examples

			n = 13, P_n = {7, 11, 13}, a(13) = 7*11*13 = 1001.
Letting n = 14, the denominator (in lowest terms) of H(n)^2*n! = 131803989435744/143 is a(14)=143. - _John M. Campbell_, Mar 27 2016
		

Crossrefs

Programs

  • Maple
    a := n -> mul(k,k=select(isprime,[$iquo(n,2)+1..n])); # Peter Luschny, Jun 20 2009
    A055773 := n -> numer(n!/iquo(n,2)!^4); # Peter Luschny, Jul 30 2011
  • Mathematica
    Table[Numerator[n!/Floor[n/2]!^4], {n, 0, 40}] (* Michael De Vlieger, Mar 27 2016 *)
  • PARI
    q=1;for(n=2,41,print1(q,",");q=if(isprime(n),q*n,q/gcd(q,n))) \\ Klaus Brockhaus, May 02 2004
    
  • PARI
    a(n) = k=1;forprime(p=nextprime(n\2+1),precprime(n),k=k*p);k \\ Klaus Brockhaus, May 02 2004
    
  • PARI
    a(n) = prod(i=primepi(n/2)+1,primepi(n),prime(i)) \\ John M. Campbell, Mar 27 2016
    
  • Python
    from math import prod
    from sympy import primerange
    def A055773(n): return prod(primerange((n>>1)+1,n+1)) # Chai Wah Wu, Apr 13 2024

Formula

a(n) = numerator(A056040(n)^2/n!).
a(n) = numerator(A056040(n)/floor(n/2)!^2).
a(n) = numerator(n!/floor(n/2)!^4). - Peter Luschny, Jul 30 2011
a(n) = product of primes p such that n/2 < p <= n. - Klaus Brockhaus, May 02 2004
a(n) = A055204(n)/A055230(n) = A055231(n!) = A007913(n!)/A055229(n!).
a(n) = Product_{i=pi(n/2)+1..pi(n)} prime(i), where pi denotes the prime counting function and prime(i) denotes the i-th prime number. - John M. Campbell, Mar 27 2016

Extensions

Entry revised by N. J. A. Sloane, Jan 07 2007
Simpler definition based on a comment of Klaus Brockhaus, set offset to 0 and prepended 1 to data. - Peter Luschny, Mar 09 2013

A055772 Square root of largest square dividing n!.

Original entry on oeis.org

1, 1, 1, 2, 2, 12, 12, 24, 72, 720, 720, 1440, 1440, 10080, 30240, 120960, 120960, 725760, 725760, 7257600, 7257600, 79833600, 79833600, 958003200, 4790016000, 62270208000, 186810624000, 2615348736000, 2615348736000, 15692092416000
Offset: 1

Views

Author

Labos Elemer, Jul 12 2000

Keywords

Examples

			For n=6, 6! = 720 = 144*5 so a(6) = sqrt(144) = 12.
		

Crossrefs

Programs

  • Maple
    a:= proc(n)
    local r,F,t;
    r:= n!;
    F:= ifactors(r)[2];
    mul(t[1]^floor(t[2]/2),t=F)
    end proc:
    seq(a(n), n= 1 .. 100); # Robert Israel, Oct 19 2014
  • Mathematica
    Table[Last[Select[Sqrt[#]&/@Divisors[n!],IntegerQ]],{n,30}] (* Harvey P. Dale, Oct 08 2012 *)
    (Sqrt@Factorial@Range@30)/.Sqrt[]->1 (* _Morgan L. Owens, May 04 2016 *)
    f[p_, e_] := p^Floor[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Jul 26 2024 *)
  • PARI
    a(n)=core(n!,2)[2] \\ Charles R Greathouse IV, Apr 03 2012

Formula

a(n) = A000188(n!) = sqrt(A008833(n!)) = sqrt(A055071(n)).
n! = a(n)^2*A055204(n) = a(n)^2*A007913(n!).
n! = (A000188(n!)^2)*A055229(n!)*A055231(n!).
log(a(n)) ~ n*log(n)/2. - David Radcliffe, Oct 17 2014

A056627 a(n) = A056622(n!).

Original entry on oeis.org

1, 1, 1, 1, 1, 12, 12, 12, 36, 720, 720, 480, 480, 1680, 3024, 12096, 12096, 145152, 145152, 7257600, 345600, 1900800, 1900800, 136857600, 684288000, 4447872000, 4447872000, 435891456000, 435891456000, 3138418483200, 3138418483200, 6276836966400, 190207180800
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Previous name "Square root of largest unitary square divisor of n!" was incorrect. See A374989 for the correct sequence with this name. - Amiram Eldar, Jul 26 2024

Examples

			a(12) = A056622(12!) = A000188(12!)/A055229(12!) = 1440/3 = 480.
		

Crossrefs

Programs

Formula

a(n) = A055772(n)/A055230(n) = A000188(n!)/A055229(n!).
a(n) = A056622(n!). - Michel Marcus, Aug 16 2020
a(n) = sqrt(A056628(n)). - Amiram Eldar, Jul 08 2024

Extensions

More terms from Michel Marcus, Aug 16 2020
Incorrect name replaced with a formula by Amiram Eldar, Jul 26 2024

A056194 Characteristic cube divisor of n!: a(n) = A056191(n!).

Original entry on oeis.org

1, 1, 1, 8, 8, 1, 1, 8, 8, 1, 1, 27, 27, 216, 1000, 1000, 1000, 125, 125, 1, 9261, 74088, 74088, 343, 343, 2744, 74088, 216, 216, 125, 125, 1000, 35937000, 4492125, 12326391, 12326391, 12326391, 98611128, 8024024008, 125375375125
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e] && e > 1, p^3, 1]; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Sep 06 2020 *)

Formula

a(n) = A056191(A000142(n)). - Amiram Eldar, Sep 06 2020

A056195 a(n) = n! divided by its characteristic cube divisor A056194.

Original entry on oeis.org

1, 2, 6, 3, 15, 720, 5040, 5040, 45360, 3628800, 39916800, 17740800, 230630400, 403603200, 1307674368, 20922789888, 355687428096, 51218989645824, 973160803270656, 2432902008176640000, 5516784599040000
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Examples

			n = 10, a(10) = 10! because g(10!) = 1.
n = 9, a(9) = 45320 because 9! = 2*2*2*2*2*2*2*3*3*5*7 and g(9!) = 2, so a(9) = 9!/8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e] && e > 1, p^3, 1]; a[n_] := n! / (Times @@ f @@@ FactorInteger[n!]); Array[a, 20] (* Amiram Eldar, Sep 06 2020 *)

Formula

The CCD of n! is the cube of g = A055229(n!) = A055230(n). So a(n) = n!/ggg = L*L*f where L = A000188(n!)/A055229(n!) = A055772(n)/A055230(n) and f = A055231(n!) = A055773(n).

A056628 a(n) = A056623(n!).

Original entry on oeis.org

1, 1, 1, 1, 1, 144, 144, 144, 1296, 518400, 518400, 230400, 230400, 2822400, 9144576, 146313216, 146313216, 21069103104, 21069103104, 52672757760000, 119439360000, 3613040640000, 3613040640000, 18730002677760000, 468250066944000000, 19783565328384000000, 19783565328384000000
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Previous name "Largest unitary square divisor of n!" was incorrect. See A374988 for the correct sequence with this name. - Amiram Eldar, Jul 26 2024

Examples

			a(12) = A056623(12!) = A008833(12!)/A055229(12!)^2 = 2073600/3^2 = 230400.
		

Crossrefs

Programs

Formula

a(n) = A055071(n)/A055230(n)^2 = A008833(n!)/A055229(n!)^2.
a(n) = A056623(n!). - Michel Marcus, Aug 16 2020
a(n) = A056627(n)^2. - Amiram Eldar, Jul 08 2024

Extensions

More terms from Michel Marcus, Aug 16 2020
Incorrect name replaced with a formula by Amiram Eldar, Jul 26 2024
Showing 1-6 of 6 results.