cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055234 Smallest x such that sigma(x) = n*phi(x), or -1 if no such x exists.

Original entry on oeis.org

1, 3, 2, 14, 56, 6, 12, 42, 30, 168, 2580, 210, 630, 420, 840, 20790, 416640, 9240, 291060, 83160, 120120, 5165160, 1719277560, 43825320, 26860680, 277560360, 1304863560, 569729160, 587133466920, 16522145640, 33044291280, 563462139240, 1140028049160, 9015394227840, 1255683068640, 65361608151840
Offset: 1

Views

Author

Jud McCranie, Jun 21 2000

Keywords

Comments

Conjecture: For each n, a(n) > 0. - Farideh Firoozbakht, Sep 12 2004
a(33) > 10^12. - Donovan Johnson, Mar 06 2012
a(34) <= 9015394227840, a(35) <= 1255683068640. - Giovanni Resta, May 08 2017
Terms after a(36) are > 10^14. a(37) <= 4771397395084320, a(38) <= 2418379501618080, a(39) <= 413956851628320, a(40) <= 1241870554884960, and a(42) <= 50916692750283360. - Jud McCranie, Sep 13 2017
a(38) = 299761858075680, a(39) = 413956851628320. a(37), a(40), and higher terms are > 4.2*10^14. - Jud McCranie, Nov 27 2017
a(37), a(40), and higher terms are > 6.0 x 10^14. - Jud McCranie, Dec 27 2017

Examples

			sigma(14) = 24 = 4*phi(14), so a(4) = 14.
n = 21: a(21) = 120120 = 2*2*2*3*5*7*11*13, sigma(120120) = 483840 = n*phi(120120), phi(120120) = 23040.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(For[m=1,DivisorSigma[1,m]!=n EulerPhi[m],m++ ];m);Do[Print[a[n]], {n,31}] (* Farideh Firoozbakht, Oct 31 2008 *)
  • PARI
    a(n) = {k = 1; while(sigma(k) != n*eulerphi(k), k++); k;} \\ Michel Marcus, Sep 01 2014
    
  • Python
    from math import prod
    from itertools import count
    from sympy import factorint
    def A055234(n):
        for m in count(1):
            f = factorint(m)
            if n*m*prod((p-1)**2 for p in f)==prod(p**(e+2)-p for p,e in f.items()):
                return m # Chai Wah Wu, Aug 12 2024

Formula

a(n) = Min{x : A000203(x)/A000010(x) = n} = Min{x : A023897(x) = n}

Extensions

More terms from Farideh Firoozbakht, Sep 12 2004
a(32) from Donovan Johnson, Mar 06 2012
a(33) from Giovanni Resta, May 08 2017
a(34)-a(36) from Jud McCranie, Sep 10 2017