A055234 Smallest x such that sigma(x) = n*phi(x), or -1 if no such x exists.
1, 3, 2, 14, 56, 6, 12, 42, 30, 168, 2580, 210, 630, 420, 840, 20790, 416640, 9240, 291060, 83160, 120120, 5165160, 1719277560, 43825320, 26860680, 277560360, 1304863560, 569729160, 587133466920, 16522145640, 33044291280, 563462139240, 1140028049160, 9015394227840, 1255683068640, 65361608151840
Offset: 1
Keywords
Examples
sigma(14) = 24 = 4*phi(14), so a(4) = 14. n = 21: a(21) = 120120 = 2*2*2*3*5*7*11*13, sigma(120120) = 483840 = n*phi(120120), phi(120120) = 23040.
Programs
-
Mathematica
a[n_]:=(For[m=1,DivisorSigma[1,m]!=n EulerPhi[m],m++ ];m);Do[Print[a[n]], {n,31}] (* Farideh Firoozbakht, Oct 31 2008 *)
-
PARI
a(n) = {k = 1; while(sigma(k) != n*eulerphi(k), k++); k;} \\ Michel Marcus, Sep 01 2014
-
Python
from math import prod from itertools import count from sympy import factorint def A055234(n): for m in count(1): f = factorint(m) if n*m*prod((p-1)**2 for p in f)==prod(p**(e+2)-p for p,e in f.items()): return m # Chai Wah Wu, Aug 12 2024
Extensions
More terms from Farideh Firoozbakht, Sep 12 2004
a(32) from Donovan Johnson, Mar 06 2012
a(33) from Giovanni Resta, May 08 2017
a(34)-a(36) from Jud McCranie, Sep 10 2017
Comments