cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A088830 a(n) = Min{x : sigma(x) = n*phi(x), x is not a prime}, the least nonprime solutions to sigma(x) = n*phi(x); special balanced numbers.

Original entry on oeis.org

1, 35, 15, 14, 56, 6, 12, 42, 30, 168, 2580, 210, 630, 420, 840, 20790, 416640, 9240, 291060, 83160, 120120, 5165160, 1719277560, 43825320, 26860680, 277560360, 1304863560, 569729160, 587133466920, 16522145640, 33044291280, 563462139240, 1140028049160
Offset: 1

Views

Author

Labos Elemer, Nov 03 2003

Keywords

Comments

a(33) > 10^12. - Donovan Johnson, Sep 03 2013
a(34) <= 9015394227840, a(35) <= 1255683068640. - Giovanni Resta, May 08 2017

Crossrefs

Compare A087979, which has a slightly different definition.
Cf. A055234.

Programs

  • Mathematica
    ds[x_, de_] := DivisorSigma[1, x]-de*EulerPhi[x] a[n_] := Block[{m=1, s=ds[m, n]}, While[(s !=0||PrimeQ[m])&&!Greater[m, 100000], m++ ]; m]; Table[a[n], {n, 22}]

Formula

For n > 3, a(n) = A055234(n). - David Wasserman, Aug 18 2005

Extensions

More terms from David Wasserman, Aug 18 2005
a(32) from Donovan Johnson, Sep 03 2013
a(33) from Giovanni Resta, May 08 2017

A289336 a(n) = numerator of (sigma(n) / phi(n)).

Original entry on oeis.org

1, 3, 2, 7, 3, 6, 4, 15, 13, 9, 6, 7, 7, 4, 3, 31, 9, 13, 10, 21, 8, 18, 12, 15, 31, 7, 20, 14, 15, 9, 16, 63, 12, 27, 2, 91, 19, 10, 7, 45, 21, 8, 22, 21, 13, 36, 24, 31, 19, 93, 9, 49, 27, 20, 9, 5, 20, 45, 30, 21, 31, 16, 26, 127, 7, 36, 34, 63, 24, 6, 36
Offset: 1

Views

Author

Jaroslav Krizek, Aug 19 2017

Keywords

Examples

			Fractions begin with: 1, 3, 2, 7/2, 3/2, 6, 4/3, 15/4, 13/6, 9/2, 6/5, 7, ...
For n = 7, sigma(7) / phi(7) = 8/6 = 4/3, a(7) = 4.
		

Crossrefs

Programs

  • Magma
    [Numerator(SumOfDivisors(n) / EulerPhi(n)): n in[1..1000]]
    
  • Mathematica
    Array[Numerator[DivisorSigma[1, #]/EulerPhi[#]] &, 71] (* Michael De Vlieger, Aug 19 2017 *)
  • PARI
    a(n) = numerator(sigma(n)/eulerphi(n)); \\ Michel Marcus, Aug 21 2017

Formula

a(n) = numerator of (A000203(n) / A000010(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A289412(k) = (Pi^4/36) * Product_{p prime} (1 + 2/p^3 - 1/p^5) = 3.6174451656... . - Amiram Eldar, Nov 21 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} A289412(k)/a(k) = Product_{p prime} (1 - 3/(p*(p + 1)) + 1/(p^2*(p + 1)) + ((p-1)^3/p^2)*Sum_{k>=3} 1/(p^k-1)) = 0.45782563109026414241... (De Koninck and Luca, 2007). - Amiram Eldar, Feb 27 2024

A289412 a(n) = denominator of (sigma(n) / phi(n)).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 4, 6, 2, 5, 1, 6, 1, 1, 8, 8, 2, 9, 4, 3, 5, 11, 2, 20, 2, 9, 3, 14, 1, 15, 16, 5, 8, 1, 12, 18, 3, 3, 8, 20, 1, 21, 5, 4, 11, 23, 4, 14, 20, 4, 12, 26, 3, 5, 1, 9, 14, 29, 2, 30, 5, 9, 32, 4, 5, 33, 16, 11, 1, 35, 8, 36, 6, 10, 9, 5, 1
Offset: 1

Views

Author

Jaroslav Krizek, Aug 19 2017

Keywords

Comments

a(n) = 1 for numbers in A020492 (balanced numbers).

Examples

			For n = 7, sigma(7) / phi(7) = 8/6 = 4/3, a(n) = 3.
		

Crossrefs

Programs

  • Magma
    [Denominator(SumOfDivisors(n) / EulerPhi(n)): n in[1..1000]]
    
  • Mathematica
    Array[Denominator[DivisorSigma[1, #]/EulerPhi[#]] &, 78] (* Michael De Vlieger, Aug 19 2017 *)
  • PARI
    a(n) = denominator(sigma(n)/eulerphi(n)); \\ Michel Marcus, Aug 21 2017

Formula

a(n) = denominator of (A000203(n) / A000010(n)).

A076375 Numbers k such that both k and 2*k are balanced numbers (A020492).

Original entry on oeis.org

1, 3, 6, 15, 35, 70, 105, 210, 357, 420, 1045, 1485, 2090, 2970, 3135, 3339, 5049, 5940, 6270, 10659, 12441, 12540, 16065, 24871, 24969, 29029, 33915, 35343, 39105, 39585, 49742, 50065, 58058, 58435, 64285, 70686, 71145, 74613, 78210, 87087
Offset: 1

Views

Author

Labos Elemer, Oct 15 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]/EulerPhi[x] Do[s=f[n]; s1=f[2*n]; If[IntegerQ[s]&&IntegerQ[s1], Print[n]], {n, 1, 100000}]

A076376 Numbers k such that k, 2*k and 4*k are balanced numbers (A020492).

Original entry on oeis.org

3, 35, 105, 210, 1045, 1485, 2970, 3135, 6270, 24871, 29029, 35343, 39105, 50065, 58435, 64285, 70686, 71145, 74613, 78210, 87087, 87685, 124605, 137885, 140335, 142290, 149226, 150195, 174174, 175305, 176715, 192855, 249210, 263055, 300390, 350610, 373065
Offset: 1

Views

Author

Labos Elemer, Oct 15 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]/EulerPhi[x] Do[s=f[n]; s1=f[2*n]; s2=f[4*n]; If[IntegerQ[s]&&IntegerQ[s1]&&IntegerQ[s2], Print[n]], {n, 1, 1000000}]

A064374 Numbers k such that sigma(k) > phi(k)^2.

Original entry on oeis.org

2, 4, 6, 10, 12, 18, 30
Offset: 1

Views

Author

Labos Elemer, Sep 27 2001

Keywords

Comments

Also numbers k such that sigma(k) > tau(k)*phi(k). - Benoit Cloitre, Aug 06 2002
There are no further terms. - Benoit Cloitre, Aug 06 2002

Examples

			k = {2, 4, 6, 10, 12, 18, 30};
sigma(k) = {3, 7, 12, 18, 28, 39, 72};
phi(k) = {1, 2, 2, 4, 4, 6, 8};
phi(k)^2 = {1, 4, 4, 16, 16, 36, 64};
sigma(k) - phi(k)^2 = {2, 3, 8, 2, 12, 3, 8}.
No more solutions below 10000000.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[30],DivisorSigma[1,#]>EulerPhi[#]^2&] (* Harvey P. Dale, Sep 27 2024 *)

Formula

Solutions to A000203(k) > A000010(k)^2.

A064375 Numbers n such that sigma_2(n) > phi(n)^3.

Original entry on oeis.org

2, 3, 4, 6, 8, 10, 12, 14, 18, 20, 24, 30, 36, 42, 60
Offset: 1

Views

Author

Labos Elemer, Sep 27 2001

Keywords

Comments

This sequence is finite, since by Grönwall's theorem sigma_2(n) <= sigma(n)^2 << (n log log n)^2 but phi(n)^3 >> (n/log log n)^3. - Charles R Greathouse IV, Nov 18 2015

Examples

			d-square sums:{5, 10, 21, 50, 85, 130, 210, 250, 455, 546, 850, 1300, 1911, 2500, 5460} phi-cubes:{1, 8, 8, 8, 64, 64, 64, 216, 216, 512, 512, 512, 1728, 1728, 4096} differences:{4, 2, 13, 42, 21, 66, 146, 34, 239, 34, 338, 788, 183, 772, 1364} Sequence is believed to be full.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[2,#]>EulerPhi[#]^3&] (* Harvey P. Dale, Feb 19 2013 *)
  • PARI
    is(n)=my(f=factor(n)); sigma(f,2)>eulerphi(f)^3 \\ Charles R Greathouse IV, Nov 18 2015

Formula

Solutions to A001157(n) > A000010(x)^3.

A076377 Numbers k such that k, 2*k, 4*k and 8*k are balanced numbers (A020492).

Original entry on oeis.org

105, 1485, 3135, 35343, 39105, 71145, 74613, 87087, 124605, 150195, 175305, 192855, 263055, 413655, 421005, 697851, 930699, 1404765, 1873485, 2471931, 2576115, 2965599, 3281265, 3398625, 3937635, 4172259, 4532625, 4589949, 4975965, 5218521, 5474115
Offset: 1

Views

Author

Labos Elemer, Oct 15 2002

Keywords

Comments

The quotients q = Sigma(u)/phi(u) for u = {n, 2n, 4n, 8n} are integers and for all terms, and equal 4, 12, 14, 15 respectively. For u = 16n, q = 31/2, i.e. no integer was found for u < 6000000.
The comment above is true for terms up to a(238) and true for 985 of the first 1000 terms. - Donovan Johnson, Mar 03 2013

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]/EulerPhi[x] Do[s=f[n]; s1=f[2*n]; s2=f[4*n]; s3=f[8*n] If[IntegerQ[s]&&IntegerQ[s1]&&IntegerQ[s2]&& IntegerQ[s3], Print[n]], {n, 1, 10000000}]

Extensions

Missing term added by Donovan Johnson, Mar 03 2013

A375262 Least positive integer m such that sigma(m)/phi(m) = n + 1/2, where sigma(.) and phi(.) are given by A000203 and A000010, respectively.

Original entry on oeis.org

5, 459, 4, 10, 860, 18, 24, 11904, 588, 60, 1481172, 1080, 1320, 6236370, 1680, 144480, 10920, 674520, 27720, 25604040, 662535720, 1413720, 303783480, 4324320, 701205120
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 08 2024

Keywords

Comments

Conjecture: Any rational number r >= 1 can be written as sigma(m)/phi(m) with m a positive integer.
We have verified this for rational numbers a/b with 36 >= a >= b >= 1.
In 1977, B.S.K.R. Somayajulu proved that the set {sigma(n)/phi(n): n = 1,2,3,...} is dense in the interval (1,+oo).
a(27) = 790269480. - Chai Wah Wu, Aug 12 2024

Examples

			a(1) = 5 with sigma(5)/phi(5) = 6/4 = 1 + 1/2.
a(2) = 459 = 3^3*17 with sigma(459)/phi(459) = 720/288 = 2 + 1/2.
a(20) = 25604040 = 2^3*3*5*7*11*17*163 with sigma(25604040)/phi(25604040) = 102021120/4976640 = 20 + 1/2.
		

Crossrefs

Programs

  • Mathematica
    sigma[n_]:=sigma[n]=DivisorSigma[1,n]; phi[n_]:=phi[n]=EulerPhi[n];
    tab={};Do[m=1;While[sigma[m]/phi[m]!=n+1/2,m=m+1];tab=Append[tab,m],{n,1,20}];Print[tab]
  • PARI
    a(n) = my(k=1); while (sigma(k)/eulerphi(k) != n + 1/2, k++); k; \\ Michel Marcus, Aug 08 2024
    
  • Python
    from itertools import count
    from math import prod
    from sympy import factorint
    def A375262(n):
        for m in count(1):
            f = factorint(m)
            if ((n<<1)+1)*m*prod((p-1)**2 for p in f)==prod(p**(e+2)-p for p,e in f.items())<<1:
                return m # Chai Wah Wu, Aug 11 2024

Extensions

a(21)-a(24) from Amiram Eldar, Aug 08 2024
a(25) from Chai Wah Wu, Aug 12 2024

A291051 a(n) is the smallest number k such that psi(k) = n*phi(k) where psi(k) is Dedekind psi function (A001615) and phi(k) is Euler totient function (A000010), or 0 if no such k exists.

Original entry on oeis.org

1, 3, 2, 14, 190, 6, 78, 42, 30, 570, 16770, 210, 1102290, 2730, 67830, 43890, 133707210, 746130, 27606810, 16546530, 9699690, 417086670, 3828438543930, 8720021310, 705196562070
Offset: 1

Views

Author

Altug Alkan, Aug 17 2017

Keywords

Comments

Also a(n) is the smallest squarefree number k such that sigma(k) = n*phi(k), or 0 if no such k exists.
It is conjectured that A055234(n) > 0 for each n. Is a(n) > 0 for all values of n?
10^12 < a(26) <= 50353622409090. - Giovanni Resta, Aug 18 2017

Examples

			a(4) = 14 since psi(14) / phi(14) = 24 / 6 = 4 and 14 is the least number with this property.
		

Crossrefs

Programs

  • Mathematica
    psi[n_] := n*Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]; f[n_] := Block[{k = 1}, While[ n*EulerPhi[k] != psi[k], k++]; k]; Array[f, 22] (* Robert G. Wilson v, Sep 15 2017 *)
  • PARI
    a001615(n) = n*sumdivmult(n, d, issquarefree(d)/d);
    a(n) = {my(k = 1); while (n*eulerphi(k) != a001615(k), k++); k; } \\ Altug Alkan, Aug 17 2017, after Charles R Greathouse IV at A001615

Extensions

a(23)-a(25) from Giovanni Resta, Aug 18 2017
Showing 1-10 of 13 results. Next