cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A073217 The terms of A055237 (sums of two powers of 5) divided by 2.

Original entry on oeis.org

1, 3, 5, 13, 15, 25, 63, 65, 75, 125, 313, 315, 325, 375, 625, 1563, 1565, 1575, 1625, 1875, 3125, 7813, 7815, 7825, 7875, 8125, 9375, 15625, 39063, 39065, 39075, 39125, 39375, 40625, 46875, 78125
Offset: 1

Views

Author

Jeremy Gardiner, Jul 21 2002

Keywords

Examples

			a(4) = 13 = (5^2+5^0) / 2
		

Crossrefs

Cf. A055237.

Formula

(5^n + 5^m) / 2, n = 0, 1, 2, 3 ..., m = 0, 1, 2, 3, ... n.

A073211 Sum of two powers of 11.

Original entry on oeis.org

2, 12, 22, 122, 132, 242, 1332, 1342, 1452, 2662, 14642, 14652, 14762, 15972, 29282, 161052, 161062, 161172, 162382, 175692, 322102, 1771562, 1771572, 1771682, 1772892, 1786202, 1932612, 3543122, 19487172, 19487182, 19487292, 19488502, 19501812, 19648222, 21258732, 38974342
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 11^2 + 11^0 = 122.
Table T(n,m) begins:
      2;
     12,    22;
    122,   132,   242;
   1332,  1342,  1452,  2662;
  14642, 14652, 14762, 15972, 29282;
  ...
		

Crossrefs

Cf. A001020 (powers of 11).
Equals twice A073219.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A194887 (12), A072390 (13), A055261 (16), A073213 (17), A073214 (19), A073215 (23).

Programs

  • Mathematica
    t = 11^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
  • Python
    from math import isqrt
    def A073211(n): return 11**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+11**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n,m) = 11^n + 11^m, n = 0, 1, 2, 3, ..., m = 0, 1, 2, 3, ... n.
Bivariate g.f.: (2 - 12*x)/((1 - x)*(1 - 11*x)*(1 - 11*x*y)). - J. Douglas Morrison, Jul 26 2021

A073213 Sum of two powers of 17.

Original entry on oeis.org

2, 18, 34, 290, 306, 578, 4914, 4930, 5202, 9826, 83522, 83538, 83810, 88434, 167042, 1419858, 1419874, 1420146, 1424770, 1503378, 2839714, 24137570, 24137586, 24137858, 24142482, 24221090, 25557426, 48275138, 410338674, 410338690, 410338962, 410343586, 410422194, 411758530, 434476242, 820677346
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 17^2 + 17^0 = 290.
Table T(n,m) begins:
      2;
     18,    34;
    290,   306,   578;
   4914,  4930,  5202,  9826;
  83522, 83538, 83810, 88434, 167042;
  ...
		

Crossrefs

Cf. A001026 (powers of 17).
Equals twice A073221.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A073211 (11), A194887 (12), A072390 (13), A055261 (16), A073214 (19), A073215 (23).

Programs

  • Mathematica
    Flatten[Table[Table[17^n + 17^m, {m, 0, n}], {n, 0, 7}]] (* T. D. Noe, Jun 18 2013 *)
    Union[Total/@Tuples[17^Range[0,10],2]] (* Harvey P. Dale, Apr 09 2015 *)
  • Python
    from math import isqrt
    def A073213(n): return 17**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+17**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n,m) = 17^n + 17^m, n = 0, 1, 2, 3, ..., m = 0, 1, 2, 3, ... n.
Bivariate g.f.: (2 - 18*x)/((1 - x)*(1 - 17*x)*(1 - 17*x*y)). - J. Douglas Morrison, Jul 26 2021

A073214 Sum of two powers of 19.

Original entry on oeis.org

2, 20, 38, 362, 380, 722, 6860, 6878, 7220, 13718, 130322, 130340, 130682, 137180, 260642, 2476100, 2476118, 2476460, 2482958, 2606420, 4952198, 47045882, 47045900, 47046242, 47052740, 47176202, 49521980, 94091762, 893871740, 893871758, 893872100, 893878598, 894002060, 896347838, 940917620, 1787743478
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 19^2 + 19^0 = 362.
Table begins:
       2;
      20,     38;
     362,    380,    722;
    6860,   6878,   7220,  13718;
  130322, 130340, 130682, 137180, 260642;
  ...
		

Crossrefs

Cf. A001029.
Equals twice A073222.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A073211 (11), A194887 (12), A072390 (13), A055261 (16), A073213 (17), A073215 (23).

Programs

  • Mathematica
    Flatten[Table[Table[19^n + 19^m, {m, 0, n}], {n, 0, 7}]] (* T. D. Noe, Jun 18 2013 *)
    Total/@Tuples[19^Range[0,10],2]//Union (* Harvey P. Dale, Jan 04 2019 *)
  • Python
    from math import isqrt
    def A073214(n): return 19**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+19**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n,m) = 19^n + 19^m for n >= 0 and m in [0..n].
Bivariate g.f.: (2 - 20*x) / ((1 - x) * (1 - 19*x) * (1 - 19*x*y)). - J. Douglas Morrison, Jul 28 2021

A073215 Sum of two powers of 23.

Original entry on oeis.org

2, 24, 46, 530, 552, 1058, 12168, 12190, 12696, 24334, 279842, 279864, 280370, 292008, 559682, 6436344, 6436366, 6436872, 6448510, 6716184, 12872686, 148035890, 148035912, 148036418, 148048056, 148315730, 154472232, 296071778
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 23^2 + 23^0 = 530.
Table begins:
       2;
      24,     46;
     530,    552,   1058;
   12168,  12190,  12696,  24334;
  279842, 279864, 280370, 292008, 559682;
  ...
		

Crossrefs

Cf. A009967.
Equals twice A072822.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A073211 (11), A194887 (12), A072390 (13), A055261 (16), A073213 (17), A073214 (19).

Programs

  • Mathematica
    With[{nn=30},Take[Union[Total/@Tuples[23^Range[0,nn],2]],nn]] (* Harvey P. Dale, Oct 16 2017 *)
  • Python
    from math import isqrt
    def A073215(n): return 23**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+23**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n, m) = 23^n + 23^m, for n >= 0 and m in [0..n].
Bivariate g.f.: (2 - 24*x) / ((1 - x) * (1 - 23*x) * (1 - 23*x*y)). - J. Douglas Morrison, Jul 29 2021

A362861 Positive integers n such that 2*n cannot be written as a sum of distinct elements of the set {5^a + 5^b: a,b = 0,1,2,...}.

Original entry on oeis.org

2, 7, 10, 11, 12, 27, 35, 50, 51, 52, 55, 60, 135, 255
Offset: 1

Views

Author

Zhi-Wei Sun, May 05 2023

Keywords

Comments

If a(15) exists, it should be greater than 10290.
Conjecture 1: (i) The current sequence only has the listed 14 terms. Also, each positive even number can be written as a sum of distinct elements of the set {3^a + 3^b: a,b = 0,1,2,...}.
(ii) Each positive even number can be written as a sum of distinct elements of the set {3^a + 7^b: a,b = 0,1,2,...}. Also, any positive even number not equal to 12 can be written as a sum of numbers of the form 3^a + 5^b (a,b >= 0) with no summand dividing another.
Conjecture 2: Let k and m be positive odd numbers greater than one. Then, any sufficiently large even numbers can be written as a sum of distinct elements of the set {k^a + m^b: a,b = 0,1,2,...}.
Conjecture 3: Let k and m be positive odd numbers greater than one. Then, any sufficiently large even numbers can be written as a sum of some numbers of the form k^a + m^b (a,b >= 0) with no summand dividing another.
Clearly, Conjecture 3 is stronger than Conjecture 2.
See also A362743 for similar conjectures.
a(15) >= 10^6. - Martin Ehrenstein, May 16 2023

Examples

			a(1) = 2, since 2*1 = 5^0 + 5^0 but 2*2 cannot be written as a sum of distinct numbers of the form 5^a + 5^b (a,b >= 0).
		

Crossrefs

Showing 1-6 of 6 results.