A055253 Number of even digits in 2^n.
0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 4, 3, 2, 3, 3, 2, 2, 5, 5, 4, 3, 4, 6, 3, 3, 6, 4, 6, 4, 5, 7, 6, 4, 4, 4, 5, 4, 7, 5, 4, 5, 7, 9, 8, 8, 8, 7, 8, 6, 10, 8, 7, 7, 9, 9, 6, 8, 8, 11, 11, 9, 12, 10, 10, 10, 13, 9, 8, 8, 10, 16, 15, 10, 13, 8, 7, 12, 12, 14, 13, 12, 15, 11, 12, 14, 10, 14, 16, 14, 16
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
Maple
A055253 := proc(val) local i, j, k, n; n := 2^val; j := 0; k := floor(ln(n)/ln(10))+1; for i from 1 to k do if (n mod 10) mod 2 = 0 then j := j+1 fi; n := floor(n/10); od; RETURN(j); end: seq(A055253(n),n=0..110); # Jaap Spies, Dec 30 2003
-
Mathematica
Table[Length@ Select[IntegerDigits[2^n], EvenQ], {n, 0, 120}] (* or *) Table[Total@ Pick[DigitCount[2^n], {0, 1, 0, 1, 0, 1, 0, 1, 0, 1}, 1], {n, 0, 120}] (* Michael De Vlieger, May 01 2016 *) Count[IntegerDigits[#],?EvenQ]&/@(2^Range[0,100]) (* _Harvey P. Dale, Mar 25 2020 *)
-
PARI
a(n) = #select(x->(x % 2) == 0, digits(2^n)); \\ Michel Marcus, May 01 2016
-
Python
def a(n): return sum(1 for d in str(1<
Michael S. Branicky, Dec 23 2022
Extensions
More terms from Jaap Spies, Dec 30 2003