cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A034887 Number of digits in 2^n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22
Offset: 0

Views

Author

Keywords

Comments

The sequence consists of the positive integers, each appearing 3 or 4 times. - M. F. Hasler, Oct 08 2016

Crossrefs

See A125117 for the sequence of first differences.

Programs

  • Magma
    [#Intseq(2^n): n in [0..100] ]; // Vincenzo Librandi, Jun 23 2015
    
  • Maple
    seq(floor(n*ln(2)/ln(10))+1, n=0..100); # Jaap Spies, Dec 11 2003
  • Mathematica
    Table[Length[IntegerDigits[2^n]], {n, 0, 100}] (* T. D. Noe, Feb 11 2013 *)
    IntegerLength[2^Range[0,80]] (* Harvey P. Dale, Jul 28 2017 *)
  • PARI
    A034887(n)=n*log(2)\log(10)+1 \\ or: { a(n)=#digits(1<M. F. Hasler, Oct 08 2016
    
  • Python
    def a(n): return len(str(1 << n))
    print([a(n) for n in range(73)]) # Michael S. Branicky, Dec 23 2022

Formula

a(n) = floor(n*log_10(2)) + 1. E.g., a(10)=4 because 2^10 = 1024 and floor(10*log_10(2)) + 1 = 3 + 1 = 4. - Jaap Spies, Dec 11 2003
a(n) = A055642(2^n) = A055642(A000079(n)).

A055254 Number of odd digits in 2^n.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 2, 2, 2, 3, 4, 1, 1, 3, 4, 3, 1, 5, 5, 2, 5, 3, 5, 5, 3, 4, 6, 7, 7, 6, 8, 5, 7, 9, 8, 6, 4, 6, 6, 6, 8, 7, 9, 6, 8, 9, 9, 8, 8, 11, 10, 10, 7, 8, 10, 7, 9, 10, 10, 7, 12, 13, 13, 12, 6, 7, 12, 10, 15, 16, 12, 12, 10, 12, 13, 10, 14, 14, 12, 16, 13, 11, 13, 12
Offset: 0

Views

Author

Asher Auel, May 05 2000

Keywords

Comments

Related sequence b(n) = Number of digits in 2^n that are at least 5. a(0) = 1, b(0) = 0 and a(n+1) = b(n), as a digit with value 5 of higher in 2^n will generate an odd digit in 2^(n+1). In the Nieuw Archief voor Wiskunde link there is a proof that sum(k>=, b(k)/2^k) = 2/9. - Jaap Spies, Mar 13 2009

Examples

			2^30 = 1073741824 and 1073741824 contains 5 odd decimal digits hence a(30)=5.
		

References

  • J. Borwein, D. Bailey and R. Girgensohn, Experimentation in mathematics : computational paths to discovery, A. K. Peters, 2004, pp. 14-15.

Crossrefs

Programs

  • Maple
    A055254 := proc(val) local i, j, k, n; n := 2^val; j := 0; k := floor(ln(n)/ln(10))+1; for i from 1 to k do if (n mod 10) mod 2 = 1 then j := j+1 fi; n := floor(n/10); od; RETURN(j); end: seq(A055254(n),n=0..110); # Jaap Spies
  • Mathematica
    A055254[N_] := Count[ #, True] & /@ Map[OddQ, IntegerDigits /@ (2^# & /@ Range[N])] (* This generates a table of the number of odd digits in the first N powers of two *) (* Douglas Skinner (skinnerd(AT)comcast.net), Dec 06 2007 *)
    Table[Count[IntegerDigits[2^n],?OddQ],{n,0,90}] (* _Harvey P. Dale, Mar 25 2015 *)
  • PARI
    a(n)=my(d=digits(2^n)%2);sum(i=1,#d,d[i]) \\ Charles R Greathouse IV, Jun 04 2013
    
  • Perl
    sub a{my $m;map $m+=1&$_,split //,1<
    				
  • Python
    def a(n): return sum(1 for d in str(1<Michael S. Branicky, Dec 23 2022

Formula

Sum(k>=0,a(k)/2^k)=11/9 (for a proof see the comment above). [Corrected by Jaap Spies, Mar 13 2009]

Extensions

More terms from Jaap Spies, Dec 30 2003

A272896 Difference between the number of odd and even digits in the decimal expansion of 2^n.

Original entry on oeis.org

1, -1, -1, -1, 0, 0, -2, -1, -1, 1, -2, -4, -2, 0, -1, -1, 1, 2, -4, -4, -1, 1, -1, -5, 2, 2, -4, 1, -3, 1, 0, -4, -2, 2, 3, 3, 1, 4, -2, 2, 5, 3, -1, -5, -2, -2, -2, 1, -1, 3, -4, 0, 2, 2, -1, -1, 5, 2, 2, -4, -3, 1, -5, -1, 0, 0, -6, 3, 5, 5, 2, -10, -8, 2, -3, 7, 9, 0, 0
Offset: 0

Views

Author

Seiichi Manyama, May 09 2016

Keywords

Comments

All vanishing entries are a(A272898(k)) = 0, k >= 1. - Wolfdieter Lang, May 24 2016

Examples

			2^10 = 1024, 2^11 = 2048, 2^12 = 4096, 2^13 = 8192.
So a(10) = 1 - 3 = -2, a(11) = 0 - 4 = -4, a(12) = 1 - 3 = -2, a(13) = 2 - 2 = 0.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[#, ?OddQ] - Count[#, ?EvenQ] &@ IntegerDigits[2^n], {n, 0, 100}] (* Michael De Vlieger, May 09 2016 *)
  • PARI
    a(n) = #select(x -> x%2, digits(2^n)) - #select(x -> !(x%2), digits(2^n));
    for(n=0, 78, print1(a(n),", ")) \\ Indranil Ghosh, Mar 13 2017
    
  • Python
    def A272896(n):
        x=y=0
        for i in str(2**n):
            if int(i)%2: x+=1
            else: y+=1
        return x - y # Indranil Ghosh, Mar 13 2017
  • Ruby
    def a(n)
      str = (2 ** n).to_s
      str.size - str.split('').map(&:to_i).select{|i| i % 2 == 0}.size * 2
    end
    (0..n).each{|i| p a(i)}
    

Formula

a(n) = A055254(n) - A055253(n) = A196564(2^n) - A196563(2^n). - Indranil Ghosh, Mar 13 2017

A096614 Decimal expansion of Sum_{n>=1} f(2^n)/2^n, where f(n) is the number of even digits in n.

Original entry on oeis.org

1, 0, 3, 1, 6, 0, 6, 3, 8, 6, 4, 4, 5, 0, 9, 6, 1, 2, 2, 5, 1, 5, 4, 7, 7, 3, 5, 4, 1, 8, 7, 1, 3, 0, 3, 1, 0, 3, 9, 0, 2, 2, 6, 4, 1, 5, 2, 9, 2, 6, 9, 4, 0, 7, 0, 9, 5, 7, 6, 7, 3, 2, 4, 1, 2, 1, 1, 1, 0, 7, 2, 8, 3, 9, 2, 1, 4, 0, 7, 8, 9, 1, 6, 0, 5, 5, 6, 1, 7, 2, 3, 7, 5, 1, 1, 2, 0, 6, 8, 2, 4, 0, 0, 2, 5, 5
Offset: 1

Views

Author

Eric W. Weisstein, Jun 30 2004

Keywords

Comments

This constant is transcendental. If the number of even digits is replaced with the number of odd digits, then the sum will be 1/9. (Borwein et al. 2004). - Amiram Eldar, Nov 14 2020

Examples

			1.03160638...
		

References

  • Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, 2004, pp. 14-15.

Crossrefs

Cf. A055253.

Programs

  • Mathematica
    RealDigits[-1/9 + Sum[(1 + Floor[k*Log10[2]])/2^k, {k, 1, 350}], 10,
    100][[1]] (* Amiram Eldar, Nov 14 2020 *)
  • PARI
    -1/9 + suminf(k=1, (1 + floor(k * log(2)/log(10)))/2^k) \\ Michel Marcus, Nov 14 2020

Formula

Equals -1/9 + Sum_{k>=1} (1 + floor(k * log_10(2)))/2^k. - Amiram Eldar, Nov 14 2020
Showing 1-4 of 4 results.