cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A034887 Number of digits in 2^n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22
Offset: 0

Views

Author

Keywords

Comments

The sequence consists of the positive integers, each appearing 3 or 4 times. - M. F. Hasler, Oct 08 2016

Crossrefs

See A125117 for the sequence of first differences.

Programs

  • Magma
    [#Intseq(2^n): n in [0..100] ]; // Vincenzo Librandi, Jun 23 2015
    
  • Maple
    seq(floor(n*ln(2)/ln(10))+1, n=0..100); # Jaap Spies, Dec 11 2003
  • Mathematica
    Table[Length[IntegerDigits[2^n]], {n, 0, 100}] (* T. D. Noe, Feb 11 2013 *)
    IntegerLength[2^Range[0,80]] (* Harvey P. Dale, Jul 28 2017 *)
  • PARI
    A034887(n)=n*log(2)\log(10)+1 \\ or: { a(n)=#digits(1<M. F. Hasler, Oct 08 2016
    
  • Python
    def a(n): return len(str(1 << n))
    print([a(n) for n in range(73)]) # Michael S. Branicky, Dec 23 2022

Formula

a(n) = floor(n*log_10(2)) + 1. E.g., a(10)=4 because 2^10 = 1024 and floor(10*log_10(2)) + 1 = 3 + 1 = 4. - Jaap Spies, Dec 11 2003
a(n) = A055642(2^n) = A055642(A000079(n)).

A055253 Number of even digits in 2^n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 4, 3, 2, 3, 3, 2, 2, 5, 5, 4, 3, 4, 6, 3, 3, 6, 4, 6, 4, 5, 7, 6, 4, 4, 4, 5, 4, 7, 5, 4, 5, 7, 9, 8, 8, 8, 7, 8, 6, 10, 8, 7, 7, 9, 9, 6, 8, 8, 11, 11, 9, 12, 10, 10, 10, 13, 9, 8, 8, 10, 16, 15, 10, 13, 8, 7, 12, 12, 14, 13, 12, 15, 11, 12, 14, 10, 14, 16, 14, 16
Offset: 0

Views

Author

Asher Auel, May 05 2000

Keywords

Crossrefs

Programs

  • Maple
    A055253 := proc(val) local i, j, k, n; n := 2^val; j := 0; k := floor(ln(n)/ln(10))+1; for i from 1 to k do if (n mod 10) mod 2 = 0 then j := j+1 fi; n := floor(n/10); od; RETURN(j); end: seq(A055253(n),n=0..110); # Jaap Spies, Dec 30 2003
  • Mathematica
    Table[Length@ Select[IntegerDigits[2^n], EvenQ], {n, 0, 120}] (* or *)
    Table[Total@ Pick[DigitCount[2^n], {0, 1, 0, 1, 0, 1, 0, 1, 0, 1}, 1], {n, 0, 120}] (* Michael De Vlieger, May 01 2016 *)
    Count[IntegerDigits[#],?EvenQ]&/@(2^Range[0,100]) (* _Harvey P. Dale, Mar 25 2020 *)
  • PARI
    a(n) = #select(x->(x % 2) == 0, digits(2^n)); \\ Michel Marcus, May 01 2016
    
  • Python
    def a(n): return sum(1 for d in str(1<Michael S. Branicky, Dec 23 2022

Extensions

More terms from Jaap Spies, Dec 30 2003

A272896 Difference between the number of odd and even digits in the decimal expansion of 2^n.

Original entry on oeis.org

1, -1, -1, -1, 0, 0, -2, -1, -1, 1, -2, -4, -2, 0, -1, -1, 1, 2, -4, -4, -1, 1, -1, -5, 2, 2, -4, 1, -3, 1, 0, -4, -2, 2, 3, 3, 1, 4, -2, 2, 5, 3, -1, -5, -2, -2, -2, 1, -1, 3, -4, 0, 2, 2, -1, -1, 5, 2, 2, -4, -3, 1, -5, -1, 0, 0, -6, 3, 5, 5, 2, -10, -8, 2, -3, 7, 9, 0, 0
Offset: 0

Views

Author

Seiichi Manyama, May 09 2016

Keywords

Comments

All vanishing entries are a(A272898(k)) = 0, k >= 1. - Wolfdieter Lang, May 24 2016

Examples

			2^10 = 1024, 2^11 = 2048, 2^12 = 4096, 2^13 = 8192.
So a(10) = 1 - 3 = -2, a(11) = 0 - 4 = -4, a(12) = 1 - 3 = -2, a(13) = 2 - 2 = 0.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[#, ?OddQ] - Count[#, ?EvenQ] &@ IntegerDigits[2^n], {n, 0, 100}] (* Michael De Vlieger, May 09 2016 *)
  • PARI
    a(n) = #select(x -> x%2, digits(2^n)) - #select(x -> !(x%2), digits(2^n));
    for(n=0, 78, print1(a(n),", ")) \\ Indranil Ghosh, Mar 13 2017
    
  • Python
    def A272896(n):
        x=y=0
        for i in str(2**n):
            if int(i)%2: x+=1
            else: y+=1
        return x - y # Indranil Ghosh, Mar 13 2017
  • Ruby
    def a(n)
      str = (2 ** n).to_s
      str.size - str.split('').map(&:to_i).select{|i| i % 2 == 0}.size * 2
    end
    (0..n).each{|i| p a(i)}
    

Formula

a(n) = A055254(n) - A055253(n) = A196564(2^n) - A196563(2^n). - Indranil Ghosh, Mar 13 2017
Showing 1-3 of 3 results.