cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055268 a(n) = (11*n + 4)*C(n+3, 3)/4.

Original entry on oeis.org

1, 15, 65, 185, 420, 826, 1470, 2430, 3795, 5665, 8151, 11375, 15470, 20580, 26860, 34476, 43605, 54435, 67165, 82005, 99176, 118910, 141450, 167050, 195975, 228501, 264915, 305515, 350610, 400520, 455576, 516120, 582505, 655095, 734265
Offset: 0

Views

Author

Barry E. Williams, May 10 2000

Keywords

Comments

a(n) is the number of compositions of n when there are 9 types of each natural number. - Milan Janjic, Aug 13 2010
Convolution of A000027 with A051865 (excluding 0). - Bruno Berselli, Dec 07 2012

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Partial sums of A050441.
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.

Programs

  • GAP
    List([0..30], n-> (11*n+4)*Binomial(n+3,3)/4 ); # G. C. Greubel, Jan 17 2020
  • Magma
    /* A000027 convolved with A051865 (excluding 0): */ A051865:=func; [&+[(n-i+1)*A051865(i): i in [1..n]]: n in [1..35]]; // Bruno Berselli, Dec 07 2012
    
  • Maple
    seq( (11*n+4)*binomial(n+3,3)/4, n=0..30); # G. C. Greubel, Jan 17 2020
  • Mathematica
    Table[11*Binomial[n+4,4] -10*Binomial[n+3,3], {n,0,30}] (* G. C. Greubel, Jan 17 2020 *)
  • PARI
    a(n) = (11*n+4)*binomial(n+3, 3)/4; \\ Michel Marcus, Sep 07 2017
    
  • Python
    A055268_list, m = [], [11, 1, 1, 1, 1]
    for _ in range(10**2):
        A055268_list.append(m[-1])
        for i in range(4):
            m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
    
  • Sage
    [(11*n+4)*binomial(n+3,3)/4 for n in (0..30)] # G. C. Greubel, Jan 17 2020
    

Formula

G.f.: (1 + 10*x)/(1-x)^5. - R. J. Mathar, Oct 26 2011
From G. C. Greubel, Jan 17 2020:(Start)
a(n) = 11*binomial(n+4,4) - 10*binomial(n+3,3).
E.g.f.: (24 + 336*x + 432*x^2 + 136*x^3 + 11*x^4)*exp(x)/24. (End)