cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055269 a(n) = 4*a(n-1) - a(n-2) + 3 with a(0)=1, a(1)=7.

Original entry on oeis.org

1, 7, 30, 116, 437, 1635, 6106, 22792, 85065, 317471, 1184822, 4421820, 16502461, 61588027, 229849650, 857810576, 3201392657, 11947760055, 44589647566, 166410830212, 621053673285, 2317803862931, 8650161778442, 32282843250840, 120481211224921, 449642001648847
Offset: 0

Views

Author

Barry E. Williams, May 10 2000

Keywords

Comments

Also partial sums of A054491.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • Magma
    I:=[1,7,30]; [n le 3 select I[n] else 5*Self(n-1) - 5*Self(n-2) + Self(n-3): n in [1..40]]; // G. C. Greubel, Mar 16 2020
    
  • Maple
    A055269:= n-> simplify((5*ChebyshevU(n, 2) - 3*ChebyshevU(n-1, 2) - 3)/2); seq( A055269(n), n=0..40); # G. C. Greubel, Mar 16 2020
  • Mathematica
    LinearRecurrence[{5,-5,1},{1,7,30},40] (* or *) CoefficientList[ Series[ (1+2*x)/(1-5*x+5*x^2-x^3),{x,0,40}],x] (* Harvey P. Dale, Dec 01 2013 *)
    Table[(5*ChebyshevU[n, 2] -3*ChebyshevU[n-1, 2] - 3)/2, {n,0,40}] (* G. C. Greubel, Mar 16 2020 *)
  • Sage
    [(5*chebyshev_U(n, 2) - 3*chebyshev_U(n-1, 2) - 3)/2 for n in (0..40)] # G. C. Greubel, Mar 16 2020

Formula

G.f.: (1+2*x)/((1-x)*(1-4*x+x^2)).
a(n) = ( ( (17 - 5*(2-sqrt(3)))*(2+sqrt(3))^n + (5*(2+sqrt(3))-17)*(2-sqrt(3))^n )/(4*sqrt(3)) ) - 3/2.
a(n) = (5*ChebyshevU(n, 2) - 3*ChebyshevU(n-1, 2) - 3)/2. - G. C. Greubel, Mar 16 2020

Extensions

Corrected by T. D. Noe, Nov 07 2006