A055270 a(n) = 7*a(n-1) + (-1)^n * binomial(2,2-n) with a(-1)=0.
1, 5, 36, 252, 1764, 12348, 86436, 605052, 4235364, 29647548, 207532836, 1452729852, 10169108964, 71183762748, 498286339236, 3488004374652, 24416030622564, 170912214357948, 1196385500505636, 8374698503539452, 58622889524776164, 410360226673433148, 2872521586714032036
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (7).
Programs
-
Magma
[1,5] cat [36*7^(n-2): n in [2..30]]; // G. C. Greubel, Mar 16 2020
-
Maple
A055270:= n-> `if`(n<2, 4*n+1, 36*7^(n-2)); seq(A055270(n), n=0..30); # G. C. Greubel, Mar 16 2020
-
Mathematica
Join[{1,5},NestList[7#&,36,20]] (* Harvey P. Dale, Sep 04 2017 *)
-
Sage
[1,5]+[36*7^(n-2) for n in (2..30)] # G. C. Greubel, Mar 16 2020
Formula
a(n) = 6^2 * 7^(n-2), n >= 2 with a(0)=1, a(1)=5.
G.f.: (1-x)^2/(1-7*x).
a(n) = Sum_{k=0..n} A201780(n,k)*5^k. - Philippe Deléham, Dec 05 2011
E.g.f.: (13 - 7*x + 36*exp(7*x))/49. - G. C. Greubel, Mar 16 2020
Extensions
Terms a(20) onward added by G. C. Greubel, Mar 16 2020
Comments