A055380 Central prime p in the smallest (2n+1)-tuple of consecutive primes that are symmetric with respect to p.
5, 18731, 683783, 98303927, 60335249959, 1169769749219, 3945769040699039, 159067808851610657, 6919940122097246597
Offset: 1
Examples
In 5-tuple of consecutive primes (18713, 18719, 18731, 18743, 18749), the primes are symmetric w.r.t. its central prime 18731, since 18713+18749 = 18719+18743 = 2*18731, and this is the smallest such 5-tuple. Hence, a(2)=18731. Alternatively, the symmetry can be seen from the differences between consecutive primes. For (18713, 18719, 18731, 18743, 18749), the differences are (6,12,12,6).
Links
- Stop@home, BOINC project to search all up to 2^64. [Dead link]
- Symmetric Prime Tuples, SPT test project.
Programs
-
Mathematica
Table[i = n + 2; While[x = Differences[Table[Prime[k + i], {k, -n, n}]]; x != Reverse[x], i++]; Prime[i], {n, 3}] (* Robert Price, Oct 12 2019 *)
Formula
a(n) = A151800^(n)(A175309(2n)), i.e., A151800 applied n times on A175309(2n). - Max Alekseyev, Jul 26 2014
Extensions
a(6) from Donovan Johnson, Mar 09 2008
Definition corrected by Max Alekseyev, Jul 29 2014
a(7) from Dmitry Petukhov, added by Max Alekseyev, Nov 03 2014
a(8) from SPT project, added by Dmitry Petukhov, Apr 06 2017
a(9) from SPT project, added by Dmitry Petukhov, Mar 25 2025
Comments