cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A302997 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] theta_3(x)^k/(1 - x), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 13, 7, 1, 1, 9, 33, 29, 9, 1, 1, 11, 89, 123, 49, 11, 1, 1, 13, 221, 425, 257, 81, 13, 1, 1, 15, 485, 1343, 1281, 515, 113, 15, 1, 1, 17, 953, 4197, 5913, 3121, 925, 149, 17, 1, 1, 19, 1713, 12435, 23793, 16875, 6577, 1419, 197, 19, 1, 1, 21, 2869, 33809, 88273, 84769, 42205, 11833, 2109, 253, 21, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2018

Keywords

Comments

A(n,k) is the number of integer lattice points inside the k-dimensional hypersphere of radius n.

Examples

			Square array begins:
  1,   1,   1,    1,     1,      1,  ...
  1,   3,   5,    7,     9,     11,  ...
  1,   5,  13,   33,    89,    221,  ...
  1,   7,  29,  123,   425,   1343,  ...
  1,   9,  49,  257,  1281,   5913,  ...
  1,  11,  81,  515,  3121,  16875,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[EllipticTheta[3, 0, x]^k/(1 - x), {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[x^i^2, {i, -n, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
  • PARI
    T(n,k)={if(k==0, 1, polcoef(((1 + 2*sum(j=1, n, x^(j^2)) + O(x*x^(n^2)))^k)/(1-x), n^2))} \\ Andrew Howroyd, Sep 14 2019

Formula

A(n,k) = [x^(n^2)] (1/(1 - x))*(Sum_{j=-infinity..infinity} x^(j^2))^k.

A175361 Partial sums of A000141.

Original entry on oeis.org

1, 13, 73, 233, 485, 797, 1341, 2301, 3321, 4197, 5757, 8157, 10237, 12277, 15541, 19701, 23793, 27273, 31653, 38853, 45405, 50013, 58173, 68733, 76957, 84769, 94969, 108089, 120569, 130673, 144817, 164017, 180397, 191917, 209317, 234277, 252673, 269113, 293593
Offset: 0

Views

Author

R. J. Mathar, Apr 24 2010

Keywords

Comments

The 6th row of A122510.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[EllipticTheta[3,x]^6/(1-x),{x,0,35}],x] (* Stefano Spezia, Jun 21 2024 *)
  • Python
    from math import prod
    from sympy import factorint
    def A175361(n):
        c = 1
        for m in range(1,n+1):
            f = [(p,e,(0,1,0,-1)[p&3]) for p,e in factorint(m).items()]
            c += (prod((p**(e+1<<1)-a)//(p**2-a) for p, e, a in f)<<2)-prod(((k:=p**2*a)**(e+1)-1)//(k-1) for p, e, a in f)<<2
        return c # Chai Wah Wu, Jun 21 2024

Formula

a(n^2) = A055412(n).
G.f.: theta_3(x)^6 / (1 - x). - Ilya Gutkovskiy, Feb 13 2021

A341425 Number of positive solutions to (x_1)^2 + (x_2)^2 + ... + (x_6)^2 <= n^2.

Original entry on oeis.org

7, 48, 331, 1269, 3698, 9382, 20927, 42683, 79844, 142173, 238810, 387615, 603589, 915324, 1345294, 1939221, 2729723, 3783313, 5138567, 6895632, 9108626, 11909496, 15362753, 19642539, 24832744, 31179476, 38757032, 47877886, 58647957, 71447776, 86391220
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 11 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(n=0, 0,
          add((s->`if`(s>n, 0, b(n-s, k-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n^2, 6):
    seq(a(n), n=3..33);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[3, 0, x] - 1)^6/(64 (1 - x)), {x, 0, n^2}], {n, 3, 33}]

Formula

a(n) is the coefficient of x^(n^2) in expansion of (theta_3(x) - 1)^6 / (64 * (1 - x)).

A341401 Number of nonnegative solutions to (x_1)^2 + (x_2)^2 + ... + (x_6)^2 <= n.

Original entry on oeis.org

1, 7, 22, 42, 63, 99, 160, 220, 265, 337, 457, 577, 672, 792, 978, 1178, 1319, 1469, 1739, 2039, 2255, 2507, 2882, 3242, 3513, 3819, 4269, 4769, 5159, 5555, 6181, 6841, 7246, 7666, 8401, 9181, 9763, 10363, 11188, 12108, 12828, 13434, 14394, 15534, 16359, 17211, 18477, 19677
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Comments

Partial sums of A045848.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= proc(n) option remember; b(n, 6)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..47);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 47; CoefficientList[Series[(1 + EllipticTheta[3, 0, x])^6/(64 (1 - x)), {x, 0, nmax}], x]

Formula

G.f.: (1 + theta_3(x))^6 / (64 * (1 - x)).
a(n^2) = A055405(n).

A302861 a(n) = [x^(n^2)] theta_3(x)^n/(1 - x), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 3, 13, 123, 1281, 16875, 252673, 4031123, 70554353, 1318315075, 26107328109, 549772933959, 12147113355505, 280978137279483, 6780378828922333, 169829490474843659, 4409771551548703649, 118361723203178140163, 3277041835527134201777, 93455465161026267454527
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 14 2018

Keywords

Comments

a(n) = number of integer lattice points inside the n-dimensional hypersphere of radius n.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[EllipticTheta[3, 0, x]^n/(1 - x), {x, 0, n^2}], {n, 0, 19}]
    Table[SeriesCoefficient[1/(1 - x) Sum[x^k^2, {k, -n, n}]^n, {x, 0, n^2}], {n, 0, 19}]

Formula

a(n) = A122510(n,n^2).
Showing 1-5 of 5 results.