cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055417 Number of points in N^n of norm <= 2.

Original entry on oeis.org

1, 3, 6, 11, 20, 36, 63, 106, 171, 265, 396, 573, 806, 1106, 1485, 1956, 2533, 3231, 4066, 5055, 6216, 7568, 9131, 10926, 12975, 15301, 17928, 20881, 24186, 27870, 31961, 36488, 41481, 46971, 52990, 59571, 66748, 74556, 83031, 92210, 102131, 112833, 124356
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 0, 2, -1, 2, -1, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Mar 12 2009

Examples

			{(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 2, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (2, 0, 0)} are all the points in N^3 of norm <= 2 so a(3)=11.
		

Crossrefs

Row n=2 of A302998.

Programs

  • Mathematica
    CoefficientList[Series[(-z^3 - z^2 + 2*z - 1)/(z - 1)^5, {z, 0, 100}], z] (* and *) Table[(n^4 - 6*n^3 + 23 n^2 + 6*n)/24, {n, 1, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 17 2011 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,3,6,11,20},50] (* Harvey P. Dale, Aug 30 2025 *)
  • PARI
    a(n)=(n^3-3*n^2+14*n+24)*(n+1)/24

Formula

a(n) = (n^3 - 3*n^2 + 14*n + 24)*(n+1)/24. Proof: The coordinates of such a point are a permutation of one of the vectors (0, ..., 0), (0, ..., 0, 1), (0, ..., 0, 2), (0, ..., 0, 1, 1), (0, ..., 0, 1, 1, 1), or (0, ..., 0, 1, 1, 1, 1), so the number of points is 1 + n + n + binomial(n,2) + binomial(n,3) + binomial(n,4). - Formula conjectured by Frank Ellermann, Mar 16 2002 and explained by Michael Somos, Apr 25 2003
G.f.: (1-2*x+x^2+x^3)/(1-x)^5. - Michael Somos, Apr 25 2003