cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302998 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] (1 + theta_3(x))^k/(2^k*(1 - x)), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 11, 11, 5, 1, 1, 6, 20, 29, 17, 6, 1, 1, 7, 36, 70, 54, 26, 7, 1, 1, 8, 63, 157, 165, 99, 35, 8, 1, 1, 9, 106, 337, 482, 357, 163, 45, 9, 1, 1, 10, 171, 702, 1319, 1203, 688, 239, 58, 10, 1, 1, 11, 265, 1420, 3390, 3819, 2673, 1154, 344, 73, 11, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2018

Keywords

Comments

A(n,k) is the number of nonnegative solutions to (x_1)^2 + (x_2)^2 + ... + (x_k)^2 <= n^2.

Examples

			Square array begins:
  1,  1,   1,   1,    1,     1,  ...
  1,  2,   3,   4,    5,     6,  ...
  1,  3,   6,  11,   20,    36,  ...
  1,  4,  11,  29,   70,   157,  ...
  1,  5,  17,  54,  165,   482,  ...
  1,  6,  26,  99,  357,  1203,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^k/(2^k (1 - x)), {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[x^i^2, {i, 0, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
  • PARI
    T(n,k)={if(k==0, 1, polcoef(((sum(j=0, n, x^(j^2)) + O(x*x^(n^2)))^k)/(1-x), n^2))} \\ Andrew Howroyd, Sep 14 2019

Formula

A(n,k) = [x^(n^2)] (1/(1 - x))*(Sum_{j>=0} x^(j^2))^k.

A055418 Number of points in N^n of norm <= 3.

Original entry on oeis.org

1, 4, 11, 29, 70, 157, 337, 702, 1420, 2780, 5258, 9615, 17043, 29381, 49430, 81404, 131563, 209084, 327237, 504945, 768820, 1155781, 1716375, 2518938, 3654750, 5244356, 7445244, 10461091, 14552809, 20051645, 27374612, 37042552, 49701157
Offset: 0

Views

Author

Keywords

Examples

			There are exactly 19 coordinate configurations (up to permutation) with up to 9 nonzero positive coordinates that can produce a vector of norm <= 3:
{..., 0, 0, 0, 0, 0, 0, 0, 0, 0}   0
{..., 0, 0, 0, 0, 0, 0, 0, 0, 1}   1
{..., 0, 0, 0, 0, 0, 0, 0, 0, 2}   2
{..., 0, 0, 0, 0, 0, 0, 0, 0, 3}   3
{..., 0, 0, 0, 0, 0, 0, 0, 1, 1}   sqrt(2)
{..., 0, 0, 0, 0, 0, 0, 0, 1, 2}   sqrt(5)
{..., 0, 0, 0, 0, 0, 0, 0, 2, 2}   2 sqrt(2)
{..., 0, 0, 0, 0, 0, 0, 1, 1, 1}   sqrt(3)
{..., 0, 0, 0, 0, 0, 0, 1, 1, 2}   sqrt(2) sqrt(3)
{..., 0, 0, 0, 0, 0, 0, 1, 2, 2}   3
{..., 0, 0, 0, 0, 0, 1, 1, 1, 1}   2
{..., 0, 0, 0, 0, 0, 1, 1, 1, 2}   sqrt(7)
{..., 0, 0, 0, 0, 1, 1, 1, 1, 1}   sqrt(5)
{..., 0, 0, 0, 0, 1, 1, 1, 1, 2}   2 sqrt(2)
{..., 0, 0, 0, 1, 1, 1, 1, 1, 1}   sqrt(6)
{..., 0, 0, 0, 1, 1, 1, 1, 1, 2}   3
{..., 0, 0, 1, 1, 1, 1, 1, 1, 1}   sqrt(7)
{..., 0, 1, 1, 1, 1, 1, 1, 1, 1}   2 sqrt(2)
{..., 1, 1, 1, 1, 1, 1, 1, 1, 1}   3
To produce the formula for a(n), it is sufficient to sum the number of permutations of these configurations in a vector of arbitrary length n.
This gives in the same order:
a(n) = 1 + n + n + n + binomial(n, 2) + n*(n - 1) + binomial(n, 2) + binomial(n, 3) + n*binomial(n-1, 2) + n*binomial(n-1, 2) + binomial(n, 4) + n*binomial(n-1, 3) + binomial(n, 5) + n*binomial(n-1, 4) + binomial(n, 6) + n*binomial(n-1, 5) + binomial(n, 7) + binomial(n, 8) + binomial(n, 9).
This is a polynomial of degree 9 in n.
a(n) = (1 + n) (9! + n (452016 + n (-224244 + n (152108 + n (-17351 + n (-16 + n (394 + (-28 + n) n)))))))/(9!).
		

Crossrefs

Row n=3 of A302998.
Cf. A055417 (case for norm <= 2).

Formula

Satisfies a degree nine polynomial (see Example section). - Olivier Gérard, Mar 30 2015
G.f.: -(8*x^8-35*x^7+51*x^6-30*x^5-5*x^4+21*x^3-16*x^2+6*x-1) / (x-1)^10. - Colin Barker, Jul 07 2013
Showing 1-2 of 2 results.