A055438 a(n) = 100*n^2 + n.
101, 402, 903, 1604, 2505, 3606, 4907, 6408, 8109, 10010, 12111, 14412, 16913, 19614, 22515, 25616, 28917, 32418, 36119, 40020, 44121, 48422, 52923, 57624, 62525, 67626, 72927, 78428, 84129, 90030, 96131, 102432, 108933, 115634, 122535
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(10^2*t+1)).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
I:=[101, 402, 903]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 04 2012
-
Mathematica
LinearRecurrence[{3, -3, 1}, {101, 402, 903}, 50] (* Vincenzo Librandi, Feb 04 2012 *) Table[100n^2+n,{n,40}] (* Harvey P. Dale, May 15 2018 *)
-
PARI
for(n=1, 50, print1(100*n^2+n", ")); \\ Vincenzo Librandi, Feb 04 2012
Formula
G.f.: x*(-101-99*x)/(x-1)^3. - Vincenzo Librandi, Feb 04 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 04 2012
Comments