cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A055436 a(n) = concatenation of n^2 and n.

Original entry on oeis.org

11, 42, 93, 164, 255, 366, 497, 648, 819, 10010, 12111, 14412, 16913, 19614, 22515, 25616, 28917, 32418, 36119, 40020, 44121, 48422, 52923, 57624, 62525, 67626, 72927, 78428, 84129, 90030, 96131, 102432, 108933, 115634, 122535, 129636, 136937, 144438, 152139
Offset: 1

Views

Author

Henry Bottomley, May 18 2000

Keywords

Crossrefs

Cf. A053061, A055437 (10n^2+n), A055438 (100n^2+n).

Programs

  • Magma
    [Seqint(Intseq(n) cat Intseq(n^2)): n in [1..40]]; // Vincenzo Librandi, Jan 03 2015
  • Maple
    a:= n-> parse(cat(n*n, n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 03 2015
  • Mathematica
    Table[n^2*10^IntegerLength[n] + n, {n, 36}] (* Jayanta Basu, Jul 12 2013 *)
    Table[FromDigits[Join[IntegerDigits[n^2], IntegerDigits[n]]],{n, 40}] (* Vincenzo Librandi, Jan 03 2015 *)

Formula

a(n) = n^2*floor(log_10(n) + 1) + n.
a(n) = A055437(n) if 1 <= n < 10, a(n) = A055438(n) if 10 <= n < 100.

A055437 a(n) = 10*n^2+n.

Original entry on oeis.org

11, 42, 93, 164, 255, 366, 497, 648, 819, 1010, 1221, 1452, 1703, 1974, 2265, 2576, 2907, 3258, 3629, 4020, 4431, 4862, 5313, 5784, 6275, 6786, 7317, 7868, 8439, 9030, 9641, 10272, 10923, 11594, 12285, 12996, 13727, 14478, 15249, 16040, 16851, 17682, 18533
Offset: 1

Views

Author

Henry Bottomley, May 18 2000

Keywords

Comments

a(n) = A055436(n) if 1<=n<10.
Number of edges in the join of the complete 4-partite graph of order 4n and the cycle graph of order n, K_n,n,n,n * C_n. - Roberto E. Martinez II, Jan 07 2002

Examples

			From the third formula: a(8) = 648 = 16^2 -17^2 +18^2 ... +30^2 -31^2 +32^2 = -33^2 +34^2 -35^2 ... +46^2 -47^2 +48^2.
		

Crossrefs

Programs

Formula

From Bruno Berselli, Nov 26 2013: (Start)
G.f.: x*(11 + 9*x) / (1 - x)^3.
a(n) = Sum_{i=0..2*n} (-1)^i*(2*n+i)^2.
a(n) = Sum_{i=1..2*n} (-1)^i*(4*n+i)^2. (End)
From Wesley Ivan Hurt, Apr 27 2016: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3.
a(n) = (1/5) * Sum_{i=0..10*n} i. (End)
E.g.f.: x*(11 + 10*x)*exp(x). - Ilya Gutkovskiy, Apr 27 2016
a(n) = A000217(6*n) - A000217(4*n). - Bruno Berselli, Sep 21 2016

A157663 a(n) = 8000*n + 40.

Original entry on oeis.org

8040, 16040, 24040, 32040, 40040, 48040, 56040, 64040, 72040, 80040, 88040, 96040, 104040, 112040, 120040, 128040, 136040, 144040, 152040, 160040, 168040, 176040, 184040, 192040, 200040, 208040, 216040, 224040, 232040, 240040, 248040, 256040
Offset: 1

Views

Author

Vincenzo Librandi, Mar 04 2009

Keywords

Comments

The identity (80000*n^2 + 800*n + 1)^2 - (100*n^2 + n)*(8000*n + 40)^2 = 1 can be written as A157664(n)^2 - A055438(n)*a(n)^2 = 1 (see Bruno Berselli's comment at A157664). - Vincenzo Librandi, Feb 04 2012

Crossrefs

Programs

  • GAP
    List([1..40], n -> 40*(200*n + 1)); # G. C. Greubel, Nov 17 2018
  • Magma
    I:=[8040, 16040]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 04 2012
    
  • Mathematica
    LinearRecurrence[{2, -1}, {8040, 16040}, 50] (* Vincenzo Librandi, Feb 04 2012 *)
    8000*Range[40]+40 (* Harvey P. Dale, Dec 31 2024 *)
  • PARI
    for(n=1, 50, print1(8000*n + 40", ")); \\ Vincenzo Librandi, Feb 04 2012
    
  • Sage
    [40*(200*n + 1) for n in (1..40)] # G. C. Greubel, Nov 17 2018
    

Formula

G.f.: x*(8040 - 40*x)/(1-x)^2. - Vincenzo Librandi, Feb 04 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 04 2012
E.g.f.: 40*(-1 + (1 + 200*x)*exp(x)). - G. C. Greubel, Nov 17 2018

A157664 a(n) = 80000*n^2 + 800*n + 1.

Original entry on oeis.org

80801, 321601, 722401, 1283201, 2004001, 2884801, 3925601, 5126401, 6487201, 8008001, 9688801, 11529601, 13530401, 15691201, 18012001, 20492801, 23133601, 25934401, 28895201, 32016001, 35296801, 38737601, 42338401, 46099201
Offset: 1

Views

Author

Vincenzo Librandi, Mar 04 2009

Keywords

Comments

The identity (80000n^2 + 800n + 1)^2 - (100n^2 + n)*(8000n + 40)^2 = 1 can be written as a(n)^2 - A055438(n)*A157663(n)^2 = 1. - Vincenzo Librandi, Feb 04 2012
This is the case s=10 of the identity (8*n^2*s^4 + 8*n*s^2 + 1)^2 - (n^2*s^2 + n)*(8*n*s^3 + 4*s)^2 = 1. - Bruno Berselli, Feb 04 2012

Crossrefs

Programs

  • GAP
    List([1..40], n -> 80000*n^2+800*n+1); # G. C. Greubel, Nov 17 2018
  • Magma
    I:=[80801, 321601, 722401]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 04 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {80801, 321601, 722401}, 50] (* Vincenzo Librandi, Feb 04 2012 *)
  • PARI
    for(n=1, 40, print1(80000*n^2 + 800*n + 1", ")); \\ Vincenzo Librandi, Feb 04 2012
    
  • Sage
    [80000*n^2+800*n+1 for n in (1..40)] # G. C. Greubel, Nov 17 2018
    

Formula

G.f.: x*(80801 + 79198*x + x^2)/(1-x)^3. - Vincenzo Librandi, Feb 04 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 04 2012
E.g.f.: (1 + 80800*x + 80000*x^2)*exp(x) - 1. - G. C. Greubel, Nov 17 2018

A157956 a(n) = 200*n + 1.

Original entry on oeis.org

201, 401, 601, 801, 1001, 1201, 1401, 1601, 1801, 2001, 2201, 2401, 2601, 2801, 3001, 3201, 3401, 3601, 3801, 4001, 4201, 4401, 4601, 4801, 5001, 5201, 5401, 5601, 5801, 6001, 6201, 6401, 6601, 6801, 7001, 7201, 7401, 7601, 7801, 8001, 8201, 8401, 8601
Offset: 1

Views

Author

Vincenzo Librandi, Mar 10 2009

Keywords

Comments

The identity (200*n + 1)^2 - (100*n^2 + n)*20^2 = 1 can be written as a(n)^2 - A055438(n)*20^2 = 1. - Vincenzo Librandi, Feb 04 2012

Crossrefs

Cf. A055438.

Programs

  • Magma
    I:=[201, 401]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 04 2012
    
  • Mathematica
    200Range[50]+1  (* Harvey P. Dale, Feb 24 2011 *)
    LinearRecurrence[{2, -1}, {201, 401}, 50] (* Vincenzo Librandi, Feb 04 2012 *)
  • PARI
    for(n=1, 50, print1(200*n + 1", ")); \\ Vincenzo Librandi, Feb 04 2012

Formula

G.f.: x*(201-x)/(1-x)^2. - Vincenzo Librandi, Feb 04 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 04 2012

A031698 Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 20.

Original entry on oeis.org

101, 402, 903, 1604, 2505, 3606, 4907, 6408, 8109, 10010, 12111, 14412, 16913, 19614, 22515, 25616, 28917, 32418, 36119, 40020, 44121, 48422, 48862, 52923, 57624, 62525, 67626, 72927, 78428, 84129, 90030, 96131, 102432, 108933, 115634, 122535, 129636
Offset: 1

Views

Author

Keywords

Crossrefs

Different from A055438.

Programs

  • Mathematica
    Select[Range[200000],!IntegerQ[Sqrt[#]]&&Min[ContinuedFraction[Sqrt[#]][[2]]]==20&] (* Vincenzo Librandi, Feb 06 2012 *)
Showing 1-6 of 6 results.