cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A055438 a(n) = 100*n^2 + n.

Original entry on oeis.org

101, 402, 903, 1604, 2505, 3606, 4907, 6408, 8109, 10010, 12111, 14412, 16913, 19614, 22515, 25616, 28917, 32418, 36119, 40020, 44121, 48422, 52923, 57624, 62525, 67626, 72927, 78428, 84129, 90030, 96131, 102432, 108933, 115634, 122535
Offset: 1

Views

Author

Henry Bottomley, May 18 2000

Keywords

Comments

The identity (200n+1)^2 - (100n^2+n)*20^2 = 1 can be written as A157956(n)^2 - a(n)*20^2 = 1 (see Barbeau's paper). Also, the identity (80000n^2 + 800n + 1)^2 - (100n^2 + n)*(8000n + 40)^2 = 1 can be written as A157664(n)^2 - a(n)*A157663(n)^2 = 1 (see the comment from Bruno Berselli in A157664). - Vincenzo Librandi, Feb 04 2012

Crossrefs

Cf. A157956, A157663, A157664, A002378, A055437; a(n) = A055436(n) if 10 <= n < 100.
Different from A031698.

Programs

  • Magma
    I:=[101, 402, 903]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 04 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {101, 402, 903}, 50] (* Vincenzo Librandi, Feb 04 2012 *)
    Table[100n^2+n,{n,40}] (* Harvey P. Dale, May 15 2018 *)
  • PARI
    for(n=1, 50, print1(100*n^2+n", ")); \\ Vincenzo Librandi, Feb 04 2012

Formula

G.f.: x*(-101-99*x)/(x-1)^3. - Vincenzo Librandi, Feb 04 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 04 2012

A157663 a(n) = 8000*n + 40.

Original entry on oeis.org

8040, 16040, 24040, 32040, 40040, 48040, 56040, 64040, 72040, 80040, 88040, 96040, 104040, 112040, 120040, 128040, 136040, 144040, 152040, 160040, 168040, 176040, 184040, 192040, 200040, 208040, 216040, 224040, 232040, 240040, 248040, 256040
Offset: 1

Views

Author

Vincenzo Librandi, Mar 04 2009

Keywords

Comments

The identity (80000*n^2 + 800*n + 1)^2 - (100*n^2 + n)*(8000*n + 40)^2 = 1 can be written as A157664(n)^2 - A055438(n)*a(n)^2 = 1 (see Bruno Berselli's comment at A157664). - Vincenzo Librandi, Feb 04 2012

Crossrefs

Programs

  • GAP
    List([1..40], n -> 40*(200*n + 1)); # G. C. Greubel, Nov 17 2018
  • Magma
    I:=[8040, 16040]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 04 2012
    
  • Mathematica
    LinearRecurrence[{2, -1}, {8040, 16040}, 50] (* Vincenzo Librandi, Feb 04 2012 *)
    8000*Range[40]+40 (* Harvey P. Dale, Dec 31 2024 *)
  • PARI
    for(n=1, 50, print1(8000*n + 40", ")); \\ Vincenzo Librandi, Feb 04 2012
    
  • Sage
    [40*(200*n + 1) for n in (1..40)] # G. C. Greubel, Nov 17 2018
    

Formula

G.f.: x*(8040 - 40*x)/(1-x)^2. - Vincenzo Librandi, Feb 04 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 04 2012
E.g.f.: 40*(-1 + (1 + 200*x)*exp(x)). - G. C. Greubel, Nov 17 2018
Showing 1-2 of 2 results.