cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A053061 a(n) is the decimal concatenation of n and n^2.

Original entry on oeis.org

11, 24, 39, 416, 525, 636, 749, 864, 981, 10100, 11121, 12144, 13169, 14196, 15225, 16256, 17289, 18324, 19361, 20400, 21441, 22484, 23529, 24576, 25625, 26676, 27729, 28784, 29841, 30900, 31961, 321024, 331089, 341156, 351225, 361296, 371369, 381444, 391521
Offset: 1

Views

Author

Felice Russo, Feb 25 2000

Keywords

References

  • Felice Russo, A set of new Smarandache functions, sequences and conjectures in number theory, American Research Press 2000

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(n^2) cat Intseq(n)): n in [1..40]]; // Vincenzo Librandi, Jan 03 2015
    
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[n],IntegerDigits[n^2]]],{n,40}] (* Harvey P. Dale, May 24 2012 *)
  • Python
    def a(n): return int(str(n) + str(n*n))
    print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Nov 24 2021

Formula

a(n) = n*(10^floor(2*log_10(n) + 1) + n). - Henry Bottomley, May 18 2000
a(n) ~ n^3. - Charles R Greathouse IV, Sep 19 2012

Extensions

More terms from James Sellers, Feb 28 2000

A055438 a(n) = 100*n^2 + n.

Original entry on oeis.org

101, 402, 903, 1604, 2505, 3606, 4907, 6408, 8109, 10010, 12111, 14412, 16913, 19614, 22515, 25616, 28917, 32418, 36119, 40020, 44121, 48422, 52923, 57624, 62525, 67626, 72927, 78428, 84129, 90030, 96131, 102432, 108933, 115634, 122535
Offset: 1

Views

Author

Henry Bottomley, May 18 2000

Keywords

Comments

The identity (200n+1)^2 - (100n^2+n)*20^2 = 1 can be written as A157956(n)^2 - a(n)*20^2 = 1 (see Barbeau's paper). Also, the identity (80000n^2 + 800n + 1)^2 - (100n^2 + n)*(8000n + 40)^2 = 1 can be written as A157664(n)^2 - a(n)*A157663(n)^2 = 1 (see the comment from Bruno Berselli in A157664). - Vincenzo Librandi, Feb 04 2012

Crossrefs

Cf. A157956, A157663, A157664, A002378, A055437; a(n) = A055436(n) if 10 <= n < 100.
Different from A031698.

Programs

  • Magma
    I:=[101, 402, 903]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 04 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {101, 402, 903}, 50] (* Vincenzo Librandi, Feb 04 2012 *)
    Table[100n^2+n,{n,40}] (* Harvey P. Dale, May 15 2018 *)
  • PARI
    for(n=1, 50, print1(100*n^2+n", ")); \\ Vincenzo Librandi, Feb 04 2012

Formula

G.f.: x*(-101-99*x)/(x-1)^3. - Vincenzo Librandi, Feb 04 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 04 2012

A055437 a(n) = 10*n^2+n.

Original entry on oeis.org

11, 42, 93, 164, 255, 366, 497, 648, 819, 1010, 1221, 1452, 1703, 1974, 2265, 2576, 2907, 3258, 3629, 4020, 4431, 4862, 5313, 5784, 6275, 6786, 7317, 7868, 8439, 9030, 9641, 10272, 10923, 11594, 12285, 12996, 13727, 14478, 15249, 16040, 16851, 17682, 18533
Offset: 1

Views

Author

Henry Bottomley, May 18 2000

Keywords

Comments

a(n) = A055436(n) if 1<=n<10.
Number of edges in the join of the complete 4-partite graph of order 4n and the cycle graph of order n, K_n,n,n,n * C_n. - Roberto E. Martinez II, Jan 07 2002

Examples

			From the third formula: a(8) = 648 = 16^2 -17^2 +18^2 ... +30^2 -31^2 +32^2 = -33^2 +34^2 -35^2 ... +46^2 -47^2 +48^2.
		

Crossrefs

Programs

Formula

From Bruno Berselli, Nov 26 2013: (Start)
G.f.: x*(11 + 9*x) / (1 - x)^3.
a(n) = Sum_{i=0..2*n} (-1)^i*(2*n+i)^2.
a(n) = Sum_{i=1..2*n} (-1)^i*(4*n+i)^2. (End)
From Wesley Ivan Hurt, Apr 27 2016: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>3.
a(n) = (1/5) * Sum_{i=0..10*n} i. (End)
E.g.f.: x*(11 + 10*x)*exp(x). - Ilya Gutkovskiy, Apr 27 2016
a(n) = A000217(6*n) - A000217(4*n). - Bruno Berselli, Sep 21 2016

A239459 Concatenation of n^3 and n.

Original entry on oeis.org

11, 82, 273, 644, 1255, 2166, 3437, 5128, 7299, 100010, 133111, 172812, 219713, 274414, 337515, 409616, 491317, 583218, 685919, 800020, 926121, 1064822, 1216723, 1382424, 1562525, 1757626, 1968327, 2195228, 2438929, 2700030, 2979131, 3276832, 3593733
Offset: 1

Views

Author

Colin Barker, Mar 19 2014

Keywords

Comments

a(n) is divisible by n.

Examples

			a(13) = 219713 because 2197 = 13^3 and 13 = 13^1.
		

Crossrefs

Programs

  • Mathematica
    Table[ToExpression[ToString[n^3]<>ToString[n]],{n,1,30}] (* Vaclav Kotesovec, Mar 24 2014 *)
    Table[n^3*10^IntegerLength[n]+n,{n,40}] (* Harvey P. Dale, Sep 07 2020 *)
  • PARI
    vector(100, n, eval(Str(n^3, n)))

A239460 Concatenation of n^2 and n^3.

Original entry on oeis.org

11, 48, 927, 1664, 25125, 36216, 49343, 64512, 81729, 1001000, 1211331, 1441728, 1692197, 1962744, 2253375, 2564096, 2894913, 3245832, 3616859, 4008000, 4419261, 48410648, 52912167, 57613824, 62515625, 67617576, 72919683, 78421952, 84124389, 90027000
Offset: 1

Views

Author

Colin Barker, Mar 19 2014

Keywords

Comments

a(n) is divisible by n^2.

Examples

			a(9) = 81729 because 81 = 9^2 and 729 = 9^3.
		

Crossrefs

Programs

  • Mathematica
    Table[ToExpression[ToString[n^2]<>ToString[n^3]],{n,1,30}] (* Vaclav Kotesovec, Mar 24 2014 *)
    Table[FromDigits[Join[Flatten[IntegerDigits[{n^2,n^3}]]]],{n,30}] (* Harvey P. Dale, Oct 27 2019 *)
  • PARI
    vector(100, n, eval(Str(n^2, n^3)))

A239461 Concatenation of n^3 and n^2.

Original entry on oeis.org

11, 84, 279, 6416, 12525, 21636, 34349, 51264, 72981, 1000100, 1331121, 1728144, 2197169, 2744196, 3375225, 4096256, 4913289, 5832324, 6859361, 8000400, 9261441, 10648484, 12167529, 13824576, 15625625, 17576676, 19683729, 21952784, 24389841, 27000900
Offset: 1

Views

Author

Colin Barker, Mar 19 2014

Keywords

Comments

a(n) is divisible by n^2.

Examples

			a(9) = 72981 because 729 = 9^3 and 81 = 9^2.
		

Crossrefs

Programs

  • Mathematica
    Table[ToExpression[ToString[n^3]<>ToString[n^2]],{n,1,30}] (* Vaclav Kotesovec, Mar 24 2014 *)
    Table[FromDigits[Flatten[IntegerDigits/@{n^3,n^2}]],{n,30}] (* Harvey P. Dale, Nov 28 2024 *)
  • PARI
    vector(100, n, eval(Str(n^3, n^2)))

A274620 If n^2 has an even number of digits, write n after the left half of the digits of n^2 and before the right half, otherwise if n^2 has 2t+1 digits, write n after the first t digits of n^2 and before the last t+1 digits.

Original entry on oeis.org

11, 24, 39, 146, 255, 366, 479, 684, 891, 11000, 11121, 11244, 11369, 11496, 21525, 21656, 21789, 31824, 31961, 42000, 42141, 42284, 52329, 52476, 62525, 62676, 72729, 72884, 82941, 93000, 93161, 103224, 103389, 113456, 123525, 123696, 133769, 143844, 153921, 164000
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2016

Keywords

Comments

In short, write n in the middle of n^2.
Portions of this sequence are sometimes given as puzzles.

Examples

			4^2 = 16 so a(4) = 1.4.6 = 146.
19^2 = 361 so a(19) = 3.19.61 = 31961.
		

References

Crossrefs

Programs

  • Mathematica
    nterms=100;Table[FromDigits[Flatten[Insert[d=IntegerDigits[n^2],IntegerDigits[n],Floor[Length[d]/2]+1]]],{n,nterms}] (* Paolo Xausa, Nov 24 2021 *)
  • Python
    def a(n):
        ss = str(n*n)
        t = len(ss)//2
        return int(ss[:t] + str(n) + ss[t:])
    print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Nov 24 2021

A378048 Numbers k such that k and k^2 together use at most 4 distinct decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 35, 38, 40, 41, 45, 46, 50, 55, 56, 60, 63, 64, 65, 66, 68, 70, 74, 75, 76, 77, 80, 81, 83, 85, 88, 90, 91, 95, 96, 97, 99, 100, 101, 102, 105, 109, 110
Offset: 1

Views

Author

Jovan Radenkovicc, Nov 15 2024

Keywords

Comments

Problem: Is there a real constant c such that a(n) < n^c for all positive integers n?
All of A136808, A136809, A136816, ..., A137079 are subsequences. Many if not most terms of A058411, A058413, ... ("tridigital solutions") are also in this sequence; see also Hisanori Mishima's web page for some nontrivial solutions. - M. F. Hasler, Feb 02 2025

Examples

			816 is in the sequence since 816^2 = 665856 and both together use at most 4 distinct digits.
149 is not in the sequence since 149^2 = 22201 and both together use 5 distinct digits.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1000000] | #Set(Intseq(n)) le 4 and #Set(Intseq(n) cat Intseq(n^2)) le 4];
    
  • Mathematica
    Select[Range[0, 110], Length[Union @@ IntegerDigits@ {#, #^2}] < 5 &] (* Amiram Eldar, Nov 15 2024 *)
  • PARI
    isok(k) = #Set(concat(digits(k), digits(k^2))) <= 4; \\ Michel Marcus, Nov 15 2024
    
  • PARI
    is(n)=my(s=Set(digits(n))); #s<5 && #setunion(Set(digits(n^2)),s)<5 \\ Charles R Greathouse IV, Jan 30 2025
    
  • PARI
    is1(n)=#setunion(Set(digits(n^2)),Set(digits(n)))<5
    ok(m)=my(d=concat(apply(k->digits(lift(k)), [m,m^2]))
    test(d)=my(v=List(),D=10^d); for(n=0,D-1, if(ok(Mod(n,D)), listput(v,n))); Vec(v)
    res=test(8); \\ build a list of residues mod 10^8
    D=diff(concat(res,res[1]+10^8)); #D
    u=List(); for(n=0,10^7, if(is1(n) && !setsearch(n,res), listput(u,n))); \\ build exceptions
    setminus(select(is1,[0..n]),list(n))
    list(lim)=my(v=List(u)); forstep(n=0,lim,D, if(is1(n), listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Jan 30 2025
    
  • Python
    def ok(n): return len(set(str(n)+str(n**2))) <= 4
    print([k for k in range(111) if ok(k)]) # Michael S. Branicky, Nov 18 2024

Formula

A043537(A053061(a(n))) <= 4.
Trivially, a(n) >> n^1.66... where the exponent is log(10)/log(4) (A154155). - Charles R Greathouse IV, Jan 30 2025

A055435 (1/18)*Difference between concatenation of n and n^2 and concatenation of n^2 and n.

Original entry on oeis.org

0, -1, -3, 14, 15, 15, 14, 12, 9, 5, -55, -126, -208, -301, -405, -520, -646, -783, -931, -1090, -1260, -1441, -1633, -1836, -2050, -2275, -2511, -2758, -3016, -3285, -3565, 12144, 12342, 12529, 12705, 12870, 13024, 13167, 13299, 13420
Offset: 1

Views

Author

Henry Bottomley, May 18 2000

Keywords

Programs

  • Mathematica
    Table[((n*10^IntegerLength[x = n^2] + x) - (n^2*10^IntegerLength[n] + n))/18, {n, 40}] (* Jayanta Basu, Jul 12 2013 *)

Formula

a(n) = (A053061(n) - A055436(n))/18 = n*(10^floor(2*log_10(W2)+1) - 1 - n*(10^floor(log_10(W2)+1)-1))/18.
Showing 1-9 of 9 results.